Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Реакторы непрерывного действия оптимизация

    В книге рассмотрены важнейшие понятия химической кинетики. Изложены основы теории реакторов различных типов (периодического и непрерывного действия, колонных каскадов). Описаны реакторы с твердой фазой (неподвижным и псевдоожиженным слоем катализатора). Рассмотрены случаи протекания в аппаратах реакций, сопровождаемых абсорбцией и экстракцией. Приведены методы расчета реакторов с мешалками (аппараты идеального смешения) и трубчатых реакторов (аппараты идеального вытеснения). Даны сравнение реакторных установок и рекомендации по выбору реакторов. Во втором издании книги (первое издание вышло в 1968 г.) более подробно рассмотрены вопросы моделирования и оптимизации реакторов. [c.4]


    Эффект неидеального перемешивания (функция распределения по временам удерживания отличается от гауссовой) в первом приближении может быть определен также с помощью смешаной модели Для описания работы реального аппарата объемом 5 м была использована модель, которая включала активный объем, работающий в режиме реактора непрерывного действия идеального смешения (85% полного объема), так называемый мертвый объем (15%) и обводную линию. Соотношение объемов и потоков подбиралось таким образом, чтобы распределение по временам удерживания для модели и реального аппарата совпадало. Очевидно, что этим условиям может удовлетворить множество различных моделей. Найти лучшую из них можно путем сравнения рассчитанных и экспериментальных величин конверсии и МВР. Моделирование на ЭВМ позволяет для подобных моделей оценить время выхода на стационарный режим, которое будет зависеть от величины мертвого объема и распределения потоков между активным и мертвым объемом. Другого типа модели могут включать элементарные объемы идеального смешения и вытеснения или набор элементарных периодических реакторов, соответствующих экспериментальной кривой распределения по временам удерживания для данного реактора. Этот подход можно считать оправданным при анализе режима и оптимизации существующих производств. При расчете реактора, по-видимому, более перспективным должен оказаться метод, основанный на использовании коэффициентов турбулентного переноса и ячеечных моделей В настоящее время можно только [c.347]

    На практике встречаются такие процессы, для которых при стационарных условиях подачи сырья и в условиях стабилизации управляемых параметров макрокинетика определяется не только концентрацией реагентов, но и временем, которое они провели в зоне реакции. Сюда относятся некоторые биохимические реакции с изменением свойств реагентов в зависимости от возраста [12]. Эти процессы будем называть процессами с нестационарной кинетикой. Знание характера нестационарной зависимости позволяет оценить ее влияние на технологические и конструктивные параметры и несет существенную информацию для составления математического описания процессов и рещения вопросов оптимизации [13]. Нестационарность процессов учитывается путем введения в кинетическое уравнение переменного зо времени коэффициента неста-ционарности реакции, который определяется по результатам экспериментов, поставленных в реакторах идеального перемешивания периодического или непрерывного действия. Предполагается, что предварительными исследованиями установлено существование для рассматриваемого процесса математического описания вида  [c.275]


    Могут быть также использованы реакторные системы комбинированного типа, составленные, скажем, из последовательно соединенных трубчатого реактора и реактора непрерывного действия с перемешиванием или же наоборот. Проблему выбора и оптимизации реакторов весьма популярно излагает Денбиг [102] несколько более широкое освещение эта проблема получила в книге Смита [112]. [c.234]

    В книге освещены вопросы оптимизации реакторов с мешалкой как периодического, так и непрерывного действия. Следует, однако. [c.24]

    Оптимизируемые системы могут описываться алгебраическими, дифференциальными, логическими, статистическими и другими математическими соотношениями. В зависимости от характера и сложности математического описания объекта целесообразно применять тот или иной тип вычислительных машин. Например, при решении экономических задач часто встречаются сложные алгебраические выражения, в которых необходимо оптимальным образом подобрать совокупность коэффициентов. Для решения этих задач целесообразно использовать цифровые вычислительные машины. В то же время большое число задач из области управления, динамики непрерывных производственных процессов и т. д. описываются при помощи дифференциальных соотношений. В последнем случае для решения задач оптимизации широко используются вычислительные устройства непрерывного действия. Такова, например, задача выбора оптимального режима химического реактора, задача выбора оптимальной программы управления электродуговой сталеплавильной печью, задача настройки регулятора на максимальное быстродействие и т. д. [c.44]

    Математическая модель ферментативного гидролиза целлюлозы в реакторах периодического и непрерывного действия была использована для количественного анализа влияния различных факторов на кинетику гидролиза [57, 58], что в свою очередь дает возможность целенаправленного изменения и оптимизации условий проведения процесса для повышения его эффективности. В качестве примеров на рис. 6.5 показан ряд кинетических кривых накопления продуктов в реакторе периодического действия, а на рис. 6.6 — в проточном колонном реакторе, полученных численным расчетом на ЭВМ в предположении, что какой-либо из возможных факторов не имеет места в реакционной системе, а также приведены экспериментальные данные. Как видно из рисунков, только при учете влияния всех факторов (кривая 2) модель достоверно описывает ход процесса (экспериментальные точки ложатся на теоретическую кривую). С другой стороны, сравнивая кинетические кривые, полученные в предположении отсутствия влияния того или иного фактора, с кривой 2, можно наглядно оценить роль каждого из факторов в процессе гидролиза. [c.178]

    В книге описаны методы математического моделирования непрерывных процессов полимеризации, протекающих в проточном реакторе или каскаде реакторов, и пути оптимизации управления этими процессами на действующих и проектируемых предприятиях. [c.2]

    Обсуждение некоторых аспектов оптимизации составляет основную цель дальнейшего рассмотрения применительно к задаче оптимального проектирования процессов полимеризации в непрерывно действующих каскадах реакторов. [c.133]

    Полимеризация происходит в каскаде реакторов непрерывного действия. Для выбора условий синтеза темплена и управляющих воздействий с целью стабилизации заданного значения ПТР была проведена оптимизация режимов работы реактора непрерывного действия с помощью метода распознавания образов. В качестве обучающей выборки использовался набор экспериментальных данных, полученных в режиме нормальной эксплуатации. [c.279]

    Рубин, Райт и Сомбаси [13] дали методику оптимизации для определения общего минимального среднего времени пребывания в неизотермической системе реакторов непрерывного действия с мешалками, когда выход в конечной стадии фиксирован. [c.113]

    Традиционная технология азокрасителей с применением реакторов большой емкости (10—50 м ) не обеспечивает условий для оптимизации процессов, прежде всего в отношении массообмена. Например, локальные значения pH в таких реакторах отличаются во время приливания раствора реагента на I—2 единицы, тогда как допустимое отклонение составляет 0,2. Интенсивный массообмен может быть реализован в малогабаритных реакторах непрерывного действия [466] или пульсацион-еых , в которых операции диазотирования и азосочетания повторяются с постоянной цикличностью [467]. Поскольку скорости реакций, проводимых без охлаждения, высоки, объемы промышленных реакторов удается уменьшить в десятки раз, облегчается строгое соблюдение параметров, стабилизируется качество и повышаются выходы продуктов [451]. [c.175]

    Для изучения процесса конверсии нами был разработан реактор непрерывного действия с движущимся слоем катализатора. Производительность реактора по водороду до одного литра в минуту. На лабораторном реакторе отработана конструкция аппарата и проведена оптимизация основных параметров процесса пиролиза. Состав предлагаемого катализатора пиролиза оптимизирован по выходу водорода и температуре процесса. Одновременно с этим рещаются смежные с этой задачей проблемы создание технолох ии выделения водорода, разработка схемы автоматизации и контроля процесса. [c.61]



Введение в теорию и расчеты химических и нефтехимических реакторов Изд.2 (1976) -- [ c.220 , c.221 ]




ПОИСК





Смотрите так же термины и статьи:

Реактор действия

Реактор непрерывного действия

Реактор оптимизация



© 2025 chem21.info Реклама на сайте