Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Реакторы выбор и сравнение

    В книге рассмотрены важнейшие понятия химической кинетики. Изложены основы теории реакторов различных типов (периодического и непрерывного действия, колонных каскадов). Описаны реакторы с твердой фазой (неподвижным и псевдоожиженным слоем катализатора). Рассмотрены случаи протекания в аппаратах реакций, сопровождаемых абсорбцией и экстракцией. Приведены методы расчета реакторов с мешалками (аппараты идеального смешения) и трубчатых реакторов (аппараты идеального вытеснения). Даны сравнение реакторных установок и рекомендации по выбору реакторов. Во втором издании книги (первое издание вышло в 1968 г.) более подробно рассмотрены вопросы моделирования и оптимизации реакторов. [c.4]


    Из приведенных примеров видно, что один и тот же процесс можно осуществить в реакторах различных типов. Выбор оптимальной технологической схемы реактора является сложной задачей, включающей оптимизацию каждой из возможных схем реактора п сравнение их друг с другом. [c.29]

    Этап выбора типа основного аппарата (реактора). При проектировании нового процесса следует иметь в виду, что тип реактора, его размеры, наряду с режимными параметрами, являются также искомыми. В ходе построения модели необходимо произвести выбор типа реактора путем сравнения возможных вариантов с учетом влияния на процесс особенностей конструктивного оформления аппарата. С этой целью могут быть использованы последовательные расчеты нескольких вариантов и выбор лучшего из них, анализ лабораторных кинетических экспериментов, информация о работе реакторов при осуществлении аналогичных процессов и др. В неко- [c.60]

    Методом многоходового выбора вариантов были проведены также расчёты задачи ( 26, 27, 28 ) с исключением из (26) обратимой реакции.-В последнем случае при сохранении основных особенностей оптимального температурного режима удавалось достигнуть большего содержания продукта В на выходе из реактора в сравнении с соответствующим процессом с обратимой реакцией (27). [c.363]

    Каждый раз при увеличении масштаба проектировщики тщательно изучают поведение большого реактора по сравнению с поведением модельного аппарата, фиксируют отклонения в его характере , т.е. в производительности, устойчивости, реакции на изменение режимов работы. Очевидно, что такой ступенчатый подход сильно затягивает сроки разработки новых процессов. Теперь становится ясным также, почему проектанты столь осторожны в выборе решений-а вдруг теория подобия не сработает и большой реактор будет функционировать не так, как предполагали при его проектировании. Это приведет к ухудшению качества продукта, увеличению расходов. [c.183]

    Эти дополнительные факторы часто могут оказаться причиной выбора иного типа реактора по сравнению с тем, который представляется целесообразным при рассмотрении только химической кинетики процесса. [c.143]

    Рассмотренный метод дал более эффективное решение (на 17,1%), чем метод, использующий стратегию минимакса, и более эффективное решение (на 4,4%) по сравнению с методом, использующим стратегию. минимума среднеарифметического значения критерия г] . При этом получена большая статистическая достоверность результатов, что обусловлено уменьшением объема реактора V и выбором оптимальных значений коэффициентов структурного разделения обратных технологических потоков. [c.137]


    Изменение плотности реакционной массы по мере ее протекания через реактор, выраженное изменением объема смеси, также влияет на выбор расчетного объема аппарата. Однако это влияние мало по сравнению с тем, которое оказывает характер движения жидкости в реакторе. Увеличение объема реакционной массы (или уменьшение ее плотности) во время реакции приводит к возрастанию соотношения объемов указанных реакторов, т. е. вызывает снижение эффективности проточного реактора идеального смешения в отличие от реактора идеального вытеснения. Уменьшение объема реакционной массы при протекании реакции приводит к обратному результату — повышению эффективности проточного реактора идеального смешения в сравнении с реактором идеального вытеснения. [c.134]

    Для одного н того же реактора можно выбрать несколько моделей, отличающихся одна от другой по числу принимаемых во внимание параметров. Модель, учитывающая меньшее число признаков и параметров, считается более узко й большее число — более ш и -р о к о й Модель может отображать одновременно признаки отдельных частей объекта и его самого или только свойства объекта в целом. Первую модель будем называть более сильной по сравнению со второй. Выбор модели определяется решением практических задач. [c.460]

    Оптимальный температурный режим, рассчитанный таким способом, может быть использован для выбора целесообразного числа слоев в реакторе идеального перемешивания. В результате расчета оптимального многослойного реактора идеального перемешивания и сравнения полученных данных с оптимальным режимом в реакторе идеального вытеснения было установлено, что в интервале изменения степени превращения 0,3—0,6 при избирательности от 0,65 до 0,7 установка аппаратов с числом слоев больше трех нерациональна. [c.93]

    Одним из факторов, используемых для сравнения и выбора реакторов, является влияние концентрации реагентов, точнее движущей силы процесса на производительность реактора. При этом условно принимается постоянство других параметров технологического режима Распределение концентрации реагентов в различных моделях реакторов приведено на рис. 21, 27 и в табл. 2. [c.92]

    Основными факторами сравнения химических реакторов, определяющими выбор типа аппарата, являются кинетика химической реакции, отношение порядков основной и побочных реакций, а также распределение времени пребывания реагентов, концентраций и температур в реакционном объеме. Эти факторы в различных типах реакторов могут по-разному влиять на степень превращения реагентов, избирательность их химического превращения, себестоимость получаемого продукта. Одной из важнейших характеристик реактора является его удельная производительность, непосредственно связанная с кинетикой химического процесса и типом аппарата. [c.178]

    Преимущество термоядерного синтеза по сравнению с реакциями расщепления урана заключается в т ом, что продукты синтеза нерадиоактивны. Радиоактивными становятся конструкции реактора, подвергающиеся нейтронному облучению. В связи с этим необходим соответствующий выбор материала для реактора. [c.80]

    Шахтные печи с движущимся под действием гравитационных сил слоем гранулированного или таблетированного катализатора являются наиболее простыми реакторами для термообработки. Их широкое применение в катализаторных производствах обусловлено незначительными потерями катализатора из-за разрушения или истирания, надежностью работы. По конструкции такие печи принципиально не отличаются от описанных выше шахтных сушилок. Значительно более жесткий температурный режим работы печей по сравнению с сушилками сказывается главным образом на выборе конструкционных материалов для изготовления основных элементов. Используют печи периодического и непрерывного действия. Разовая загрузка в печи периодического действия для различных конструкций составляет 400—5000 л. Производительность печей непрерывного действия находится в пределах от 20 до 650 кг/ч. Температура прокалки 500—1440 °С. [c.204]

    IX. Сравнение, выбор, моделирование, и оптимизация реакторов [c.2]

    СРАВНЕНИЕ, ВЫБОР, МОДЕЛИРОВАНИЕ И ОПТИМИЗАЦИЯ РЕАКТОРОВ [c.191]

    СРАВНЕНИЕ И ВЫБОР РЕАКТОРОВ [c.191]

    При выборе и сравнении реакторов по кинетическим характеристикам процесса часто пользуются зависимостью между величиной обратной скорости реакции и конверсией. Этот метод позволяет подобрать оптимальный по производительности вариант аппаратурного оформления процесса для кинетического уравнения практически любого типа реакции. [c.132]

    Задача об ОТП, как мы видим, несколько идеализирована, так как точное осуществление выбранной оптимальной функции Т (т) достижимо, в общем случае, лишь при бесконечно большом числе степеней свободы проектирования. Вал<но отметить, однако, что эта задача математически легче выбора опти.маль-ных значений конечного числа варьируемых переменных. При ее решении мы получаем относительно простые расчетные уравнения, которые можно анализировать обычными математическими методами, выявляя характер ОТП для конкретной схемы реакций. Выход продукта, или в общем случае значение критерия оптимальности для реактора идеального вытеснения, температура по длине которого изменяется оптимально, в большинстве случаев дает теоретический максимум того, что можно получить в данном процессе на данном катализаторе . Мы получаем, таким образом, научно обоснованную меру, во-первых, для оценки эффективности реального процесса и, во-вторых, для сравнения разных катализаторов. [c.242]


    Эти дополнительные соображения часто могут оказаться гфичиной выбора иного тина реактора по сравнению с тем, который представляется целесобб )азным при рассмотрении только химической кинетики процесса. Однако здесь мы ограничимся рассмотрением лишь одного аспекта проблемы выбора реактора, который, по-видимому, до сих пор недостаточно учитывается проектировщиками. [c.106]

    Из рис. У-5 видно, что при предварительном быстром нагреве степень превращения повышается по сравнению с равномерным нагревом при одинаковом суммарном расходе тепла. В данном примере выбор тепловых нагрузок 37 800 и 12 600 вт1м был сделан неудачно, поэтому температура жидкой фазы уменьшилась в последней секции печи. В общем случае отрицательный температурный градиент вдоль реактора будет приводить к образованию кокса на поверхности труб. Выбор тепловых потоков плотностью 31 460 и 8670 вт1м возможно улучшит температурный режим печи по сравнению с равномерным подводом тепла (25 200 вт/м ). [c.163]

    Если В — целевой продукт, то существование реакции расщепления, приводящей к образованию С, ставит перед необходимостью выбора реактора вытеснения. Кроме того, если побочная параллельная реакция образования D имррт более высокий порядок по сравнению с реакцией образования полезного продукта В, то в этом случае более рационально проводить процесс в реакторе смещения. Таким образом, наличие этих двух обстоятельств не позволяет прийти к однозначному выводу. Каждый из рассмотренных реакторов может обладать большим выходом в зависимости от соотнощения между константами скоростей этих трех реакций. [c.133]

    Полученные ранее критерии tie, щ, могут быть использованы при сравнении различных теплоносителей. С этой задачей встречаются при выборе теплоносителя для охлаждения атомных реакторов, для различных теплообменных аппаратов, а также при выборе рабочих тел для замкнутых циклов, например ЗГТУ. Обычный путь решения этой задачи — сравнение результатов расчета вариантов, полученных при использовании различных теплоносителей. Однако результаты такого сравнения существенно зависят от принятых тепловых схем, условий сопоставления и рассматриваемых консттрукций. Поэтому прежде чем сравнивать показатели вариантов с различными теплоносителями, целесообразно предварительно провести сопоставление свойств непосредственно самих теплоносителей для оценки перспективы их возможностей и достижимых показателей при различных параметрах. Основой такого сопоставления может служить разработанная выше методика сравнения поверхностей при условии постоянства конфигурации каналов и их пространственного расположения в решетке, что приводит к условию 112= 1- К роме того, смена теплоносителя в аппарате не влияет на коэффициент gx, т. е. gx2/gxi = l (здесь индекс 1 означает заданный, а 2 — исследуемый теплоноситель. Отсюда следует, что результаты сравнения для Q, F, N w Q, X, N характеристик аппарата будут одними и теми же. Это упрощает общее решение задачи. [c.102]

    Исследование реакторов для систем газ—жидкость с целью их эасчета и проектирования ведется в следующих направлениях 10] изучение механизма и скорости процесса массопередачи, осложненного химической реакцией моделирование структуры потоков двухфазной системы оценка влияния продольного перемешивания на эффективность реакторов определение межфазной поверхности, удерживающей способности, перепада давления. Важным вопросом является выбор типа реактора. Сравнение коэффициентов массоотдачи по жидкой фазе для систем газ—жидкость в различных реакторах приведено в табл. 4.1 [10]. [c.83]

    При рассмотрении любой ХТС всегда обнаруживается функциональная взаимосвязь аппаратов. Так, например, в ХТС, включающей реактор и аппарат разделения, реактор, который обеспечивает высокую степень превращения исходных продуктов, облегчает работу аппарата разделения. Однако работа реактора с низкой степенью превращения в ХТС может быть кодшенсирована за счет интенсификации процесса выделения целевого продукта. Следовательно, существует компромиссный вариант в выборе оборудования и режимов работы аппаратов ХТС. Аналогично в ХТС существует связь, например, между абсорбером и ректификационной колонной более интенсивно действующий абсорбер обусловливает меньшие требования к ректификации по сравнению с абсорбцией. [c.9]

    Таким образом, знак наклона кривой трр — является показателем для выбора тина реактора, обеспечивающего наибольший выход. Он Э1 вивалентен показателю, приведенному ранее Денби-гом 1 , Трамбузом и Пиретом которые рассматривали знак величины для реакционной спстемы. Когда он отрицателен, наиболее благоприятны для образования целевого продукта низкие степени превращения и предпочтительным является трубчатый реактор когда он положителен, большую часть целевого продукта следует получить ири высокой степени превращения (предпочтительнее кубовый реактор). В последнем случае производительность реактора обязательно будет низкой, так что всегда потребуется большой реакционный объем (по сравнению с трубчатым реактором). Следует лп, и до какой степени целесообразно, пожертвовать некоторой долей выхода для повышения производительности реактора (например, за счет применения каскада кубовых реакторов) Это могут показать только эконолшческпе расчеты. [c.203]

    Цель расчета по модели - определение влияния цйклическог зменения входных параметров на выход целевого продукта. Исследования проводились в следующих направлениях 1) выбор канала для нанесения возмущений 2) выбор фор кШ возмущающих воздействий 3) влияние изменения концентрации диоксида углерода в газовом потоке на входе в реактор а) на температурный режим потока б) на температуру в слое катализатора в) на качество образующегося метанола (с точки зрения образования примесей и увеличения концентрации воды). Выбор канала для нанесения возмущений выполнен с учетом возможности изменения параметров в промьппленных условиях. Для интенсификации процесса выбран расход диоксида углерода, который приводит к изменению концентрации Oj во входном потоке. Расчет технологических режимов выполнялся для случаев синусоидальной, прямоугольной и трапециевидной форм возмущающих воздействий. Анализ полученной информации показал целесообразность использования симметричных прямоугольных волн д.чя увеличения выхода метанола по сравнению с традащионным стацнон шы.ч режимом. При этом изучалось влияние периода возмущающих воздействий и их амплитуды. Установлено, что прирост производительности по метанолу в большей степени зависит от периода цикла, чем от амплитуды. Расчеты показали, что рабочий диапазон изменения температуры и расхода СО2 при реализации циклических режимов совпадает с диапазоном, определенным стационарными условия 1и проведения процесса. [c.65]

    Шахтные печи. Наиболее простыми реакторами для прокаливания являются шахтные печи с движудцимся под действием гравитационных сил слоем гранулированного или таблетированного катализатора. Их широкое применение в катализаторных производствах обусловлено высокой равномерностью прогрева катализатора, незначительными потерями катализатора из-за разрушения или истирания, сравнительной простотой устройства и надежностью работы. По конструкции такие печи принципиально не отличаются от описаннйх выше шахтных сушилок. Значительно более жесткий температурный режим работы печей по сравнению с сушилками сказывается главным образом на выборе конструкционных материалов для изготовления основных элементов. [c.251]

    Существуют различные варианты новой схемы. Выбор оптимальной схемы определяется в основном экономическими факторами. Головное место в секции ректификации может занимать пропановая колонна или колонна отиарки изобутана возможно также, что обе колонны фактически работают параллельно, причем остаток из пропановой колонны возвращается в отпарную колонну как часть поступающего в нее питания. Проведено весьма детальное обследование одной установки, работающей по этой третьей схеме. Она была выбрана как наиболее экономичная из всех современных вариантов для установок большой производительности, достигающей почти 1600 м /сутки алкилата. Важнейшие особенности этой установки представлены на рис. 3. Деэтанизированное алкеновое сырье и свежий изобутан подвергают раздельно осушке бокситом. Свежий изобутан поступает в про-межуточны изобутановый резервуар, где смешивается с циркулирующим изобутаном, после чего смесь насосом подается в реактор. Перед поступлением в реактор этот изобутан энергично смешивается с сырьем. Углеводородный продукт, избыток пзобутана и растворенная кислота из отстойника поступают в две работающие параллельно ректификационные колонны. Этот случай является первым известным авторам примером подобной схемы ректификационной секции. Схема эта дает значительные преимущества по сравнению с другими схемами ректификации. [c.174]

    Взвешивание и дозирование сыпучего и жидкого сырья в весовых емкостях с тензодатчиками является более рациональным и надежным по сравнению со взвещиванием в реакторах-смесителях. Одно из достоинств метода - возможность выбора весовой -емкости любого объема, что позволяет отмерить в реактор необходимое количество сырья всего за один цикл. При наличии нескольких весовых емкостей различное сырье может подаваться в реактор одновременно, что сокращает время лозироваиия. [c.121]

    Сравнение трех- и четырехзонного реакторов с одинаковой подачей реакционной смеси в первую зону показывает, что при значительном увеличении длины четырехзонного реактора его производительность повышается несущественно. Производительность трехзонного реактора выше, чем четырехзонного, в том случае, если в его первую зону подается большое количество смеси, т.е. влияние распределения потоков по зонам оказывается более сильным, чем выбор числа зон. [c.97]

    По сравнению с другими процессами каталитпчес1 ого крекинга крекипг с псевдоожиженным пылевидным катализатором обладает большей гибкостью в отношении выбора режима. В частности, имеется возможность работать с температурой в реакторе вышо 500° С (до 540° С) и получить газ, богатый непредельными. [c.268]

    Трубчатые змеевики и окислительные колонны широко используются в производстве нефтяных окисленных битумов. В связи с этим необходимо сравнить затраты на производстсо битумов в каждом из этих реакторов с целью определения и обоснованного выбора наиболее эффективного аппарата. Такие сравнения проводились неоднократно [1—4], причем подсчет осуществлялся на основе анализа действующих производств. Но поскольку в общих расходных показателях конкретной установки трудно выделить долю, приходящуюся на окислительный узел, наблюдаются большие расхождения. Это приводит к противоречивым выводам. Так, металлоемкость производства битумов в трубчатых реакторах больше, чем в колоннах, по одним данным, в 60 раз 21, по другим — в 1,2 раза [1]. Или по мнению одних исследователей, расход топлива не зависит от конструкции окислительного аппарата [3], по мнению других — он выше в 2,7— [c.32]

    Задачи моделирования чрезвычайно сложны, и это определяет достоверность метода. Изменение масштабов натуры по сравнению с моделью вызывает не поддающиеся учету изменения в характере взаимодействия реагирующих веществ и избирательности процесса. Выбор критерия моделирования зависит от области протекания процесса кинетической, внешней или внутренней диффузии. Одно временное сосуществование условия idem для некоторых критериев подобия химических и нефтехимических реакторов невыполнимо. Экономичность процесса требует оптимальных условий работы реактора. [c.196]

    При отсутствии пли малом газовыделении схему движения выбирают исходя из получения минимального объема аппарата, т. е. оптимизацией. Последнюю проводят сравнением оптимальных для каждой схемы движения размеров аппарата. Размеры аппарата — объем и высоту — рассчитывают так же, как для реактора-растворителя, по выражениям (89) — (91). Онп прямо зависят от скорости реагента Vp, выбор которой определяется направлением движения потоков и характеристической скоростью твердой частицы uq. В прямотоке сверху скорости С о и Vp складываются и, следовательно, скорость Vt будет максимальна, т. е. это напменее выгодный вариант. При прямотоке снизу необходимо, чтобы скорость Vp была больше, чем Vg  [c.150]

    Таким образом, результаты сравнения различных кинетических моделей показывают, что расчетные значения конверсии и температуры в адиабатическом реакторе сильно зависят от выражения скоростей реакций, описывающих с одинаково точностью опытные данные изотермического реактора. Отсюда следует, что для выбора модели кроме кинетических данных, полученных в изотермических условиях, необходимо проведение опытов в адиабатических условиях. Только в этом случае можно сделать окончательный выбор из большого числа кинетичес их моделей, описывающих процесс. [c.97]

    Отметим, что периодические изменения входных параметро использовались для нестационарного ведения технологического процесса, и в ряде случаев этот способ оказался более эффективным, чем стационарный [1, 2]. Поэтому представляется полезным выяснение на просто модельной ситуации (реакторе идеального пере-мешпвания) возможностей изменения динамического поведения при переменной скорости подачи газовой смеси. Выбор промежуточного темпа изменения скоростп подачи также не является случайным. Изменение скорости подачи в темпе изменений концентрации реагирующих на поверхности катализатора веществ вряд ли возможно. Поэтому всякое реальное измененпе скорости подачи будет медленным по сравнению с темпом измеиення концентраций реагирующих веществ. [c.226]

    Выбор материала, например, может зависеть от мощности имеющегося прокатного оборудования, размера печей для термообработки и наличия соответствующих приспособлений для закалки. Важное значение могут также иметь ограничения, связанные с транспортными средствами. Так, в Западной Европе максимальная масса изделий, которые можно перевозить на далекие расстояния, меньше, чем в США. Следовательно, в Западной Европе по сравнению с США имеется больше оснований для применения в толстостенных сосудах давления высокопрочных матери-алов. Например, обечайки химических реакторов для крупных установок по производству аммиака в Западной Европе изготовляют из высокопрочной легированной стали, а в США из спокойной, раскисленной кремнием углеродистой стали А515, сорт 70 по стандарту ASTM. Расчетная температура для таких конвертеров обычно ниже 350° С, и в этих условиях сталь А515 является [c.227]


Смотреть страницы где упоминается термин Реакторы выбор и сравнение: [c.126]    [c.424]    [c.233]    [c.545]    [c.316]    [c.206]    [c.91]   
Введение в теорию и расчеты химических и нефтехимических реакторов Изд.2 (1976) -- [ c.191 ]




ПОИСК





Смотрите так же термины и статьи:

Реактор выбор



© 2025 chem21.info Реклама на сайте