Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Высокомолекулярные классификация

    Различие между указанными выше классами углеводородов особенно резко для углеводородов низкого и среднего молекулярного веса, присутствие в которых ароматического кольца или двойной связи придает им характерные свойства этих структур. Однако классификация становится сомнительной для высокомолекулярных углеводородов, которые могут содержать ароматические, нафтеновые, олефиновые или парафиновые структуры без обнаружения свойств, характерных для преобладающей структуры. Высокомолекулярные углеводороды смазочных масел с ароматическими и нафтеновыми кольцами и длинными парафиновыми боковыми цепями могут обладать ароматическими, нафтеновыми и парафиновыми свойствами в зависимости от преобладания соответствующих структур. Кольцевой анализ, развитый Уотерманом и его школой, преодолевшими эти трудности, позволяет определять среднее содержание парафиновых боковых цепей, ароматических и нафтеновых колец. В этой главе рассматриваются лишь индивидуальные углеводороды и классы углеводородов, присутствующих в нефти. [c.12]


    Классификация высокомолекулярного нефтяного сырья [4.19] [c.106]

    В табл. И приведена классификация анионных промышленных ПАВ, Б табл. 12 — катионных и неионогенных, в табл. 13 — амфолитных и высокомолекулярных. [c.73]

    СВОЙСТВА, КЛАССИФИКАЦИЯ И МЕТОДЫ ПОЛУЧЕНИЯ ВЫСОКОМОЛЕКУЛЯРНЫХ СОЕДИНЕНИЙ [c.185]

    Несмотря на некоторую условность деления твердых углеводородов на парафины и церезины и на отсутствие достаточно четкой границы раздела этих двух групп углеводородов, оно все же сыграло большую практическую роль в нефтеперерабатывающей промышленности и нефтяном товароведении. Такая классификация тверд х высокомолекулярных нефтяных углеводородов сохранила свое значение и в настоящее время в нее внесены лишь некоторые дополнительные характеристики (температура плавления, цветность, содержание масел и др.). [c.81]

    Исходя из современных представлений о химической технологии как точной, а не описательной науке, и ее месте в системе подготовки специалиста-химика, а также из необходимости улучшения химической и, особенно, инженерной подготовки учителя средней школы, в пособии усилено внимание к изложению общих принципов и теоретических основ химической технологии, которые используются в последующем при описании конкретных технологических процессов. В то же время, учитывая адресность пособия (химик - учитель химии, а не химик -инженер-технолог), в тексте книги опущены излишняя математизация при изложении теоретических основ технологических процессов и подробное описание химической аппаратуры. Так как в учебных планах педвузов отсутствует курс Процессы и аппараты химической технологии , в пособии дается краткое освещение основных процессов, их классификация и описание типовой химической аппаратуры. По этой же причине, вследствие отсутствия в учебных планах педвузов отдельного курса химии высокомолекулярных соединений, в пособии рассматриваются такие общие вопросы как свойства полимерных материалов, особенности строения полимеров, основы реологии и принципы переработки полимерных материалов в изделия. [c.4]

    Высокомолекулярные вещества можно классифицировать по механизмам реакций их образования, но такая классификация не совсем удовлетворительна. Более тонкое подразделение может быть проведено только по химическому строению. В этом случае учитывается строение не только основной, но и боковых цепей, причем трудности, связанные с характеристикой разветвленных или сетчатых макромолекул, вполне преодолимы. [c.932]


    Ниже эта классификация иллюстрируется некоторыми примерами. Сначала высокомолекулярные вещества подразделяют по строению основной цепи, затем по строению боковых групп в порядке степени их замещения . В приведенных примерах ие -.учитывается, с помощью какой полиреакции получена данная высокомолекулярная цепь. [c.932]

    Согласно классификации А. В. Киселева [4, с. 18] адсорбенты можно отнести к трем типам. Тип I — неспецифические адсорбенты, к которым относится графитированная сажа. Адсорбенты этого типа не содержат на своей поверхности функциональных групп или ионов, способных к обмену. К этому же типу адсорбентов можно отнести высокомолекулярные углеводороды, например полиэтилен. [c.54]

    Схема классификации полимераналогичных реакций неорганических высокомолекулярных соединений (по С. И. Кольцову) [c.246]

    Классификация. По методам получения все высокомолекулярные соединения можно разделить на три группы природные (например, белки, нуклеиновые кислоты, целлюлоза, натуральный каучук), синтетические (полиэтилен, полихлорвинил и др.) и искусственные, которые получены путем химической модификации природных полимеров. [c.378]

    Приведенная классификация приложима не только к коллоидным системам, но и к системам, представляющим собою растворы высокомолекулярных веществ. [c.28]

    В учебнике изложены основные сведения о дисперсных системах (классификация, очистка от низкомолекулярных примесей, молекуляр-но-кинетические свойства), поверхностных явлениях, адсорбционных процессах, электрических и оптических явлениях и дисперсных средах, устойчивости коллоидных систем, структуро- II мицеллообразовании. Рассмотрены свойства высокомолекулярных соединений и их растпоров. [c.240]

    Известно несколько способов классификации органических соединений. Один из них — классификация в соответствии с величиной молекул при этом различают низкомолекулярные и высокомолекулярные макромолекулярные) соединения. Для первых относительная молекулярная масса достигает десятков, сотен, в крайнем случае тысяч, а для макромолекул — от десятков тысяч до миллионов. У данного низкомолекулярного соединения все молекулы одинаковы и имеют одинаковую относительную молекулярную массу, а молекулы данного макромо-лекулярного соединения могут немного отличаться друг от друга, прежде всего по относительной молекулярной массе. Поэтому в случае макромолекулярных соединений говорят о примерной относительной молекулярной массе. Низкомолекулярные соединения при нагревании в большинстве случаев плавятся, обычно уже при температурах до 200 С, а высокомолекуляр- [c.7]

    КЛАССИФИКАЦИЯ ВЫСОКОМОЛЕКУЛЯРНЫХ СОЕДИНЕНИИ [c.166]

    КЛАССИФИКАЦИЯ ВЫСОКОМОЛЕКУЛЯРНЫХ СОЕДИНЕНИЙ [c.438]

    Классификация высокомолекулярных соединений по структуре макромолекул [c.442]

    Классификация высокомолекулярных соединений по поведению при нагревании [c.443]

    Высокомолекулярные соединения имеют и специфические свойства— ОКИ набухают мх растворы обладают высокой вязкостью и способностью легко желатинироваться. По современной классификации растворы высокомолекулярных соединений относят к гомогенным растворам, имеющим ряд свойств коллоидов, а также и специфические свойства. [c.197]

    В первой части книги показано значение высокомолекулярных соединений, рассмотрены их самые общие свойства и изложены основные положения химии соединений этого класса. В этом же разделе даны основные понятия, номенклатура и классификация высокомолекулярных соединений, а также приведен краткий очерк истории развития химии высокомолекулярных соединений. [c.6]

    Классификация карбоцепных высокомолекулярных соединений. [c.32]

    Все карбоцепные полимеры представляют собой высокомолекулярные углеводороды или их производные и в соответствии с классификацией и номенклатурой оргапической химии могут быть подразделены на следующие классы соединений (табл. 3). [c.32]

    Классификация гетероцепных высокомолекулярных соединений. Гетероцепные высокомолекулярные соединения в зависимости от гетероатома, входящего в состав основной цепи, подразделяются на кислородсодержащие, азотсодержащие, серосодержащие и элементоорганические полимеры. Эти большие группы полимеров подразделяются на подгруппы в соответствии с принятой в органической химии классификацией (табл. 4). [c.32]

    Высокополимерные и высокомолекулярные соединения (ВМС) и их растворы занимают особое место в коллоидно-химической классификации. Растворы ВМС, являясь, по существу, истинными молекулярными растворами, обладают в то же время признаками коллоидного состояния. При самопроизвольном растворении ВМС диспергируются до отдельных макромолекул, образуя гомогенные, однофазные, устойчивые и обратимые системы (например, растворы белка в воде, каучука в бензоле), принципиально не отличающиеся от обычных молекулярных растворов. Однако размеры этих макромолекул являются гигантскими по сравнению с размерами обычных молекул и соизмеримы с размерами коллоидных частиц. Приведенные на стр. 13 данные показывают, что размеры макромолекул (гликоген) могут быть не меньшими, а иногда большими, чем размеры обычных коллоидных частиц (золь Аи) и тонких пор. Поскольку дисперсность, как мы уже видели, существенно влияет на свойства системы, очевидно, что растворы ВМС должны обладать рядом признаков, общих с высокодисперсными гетерогенными системами. Действительно, по целому ряду свойств (диффузия, задержка на ультрафильтрах, структурообразование, оптические и электрические свойства) растворы ВМС стоят ближе к коллоидным системам, нежели к молекулярным растворам. Поскольку растворы ВМС диалектически сочетают свойства молекулярных растворов и коллоидных систем, целесообразно называть их, по предложению Жукова, молекулярными коллоидами, в отличие от другого класса, — типичных высокодисперсных систем — суспензоидов [1].  [c.14]


    Высокополимерные и высокомолекулярные соединения (ВМС) и их растворы занимают особое место в коллоидно-химической классификации. Растворы ВМС, являясь, по существу, истинными молекулярными растворами, обладают в то же время многими признаками коллоидного состояния. При самопроизвольном растворении ВМС диспергируются до отдельных макромолекул, образуя гомогенные, однофазные, устойчивые и обратимые системы (например, растворы белка в воде, каучука в бензоле), принципиально не отличающиеся от обычных молекулярных растворов. Однако размеры этих макромолекул являются гигантскими по сравнению с размерами обычных молекул и соизмеримы с размерами коллоидных частиц. Приведенные выше данные показывают, что размеры макромолекул (гликоген) могут быть не меньшими, а иногда большими, чем размеры обычных коллоидных частиц (золь Аи) и тонких пор. [c.15]

    Сильно лио( обиые и сильно лиофильные кол.лоидные системы резко различаются ио многим важнейшим свойствам, в связи с чем кляссифи1сация коллоидных систем основана на этом иризиаке. Однако в настоящее время эта классификация не является общепринятой, тем более, что резкой границы между лиофобными и лиофильными коллоидными системами нет и известно много систем промежуточного характера. К лиофильным системам раньше относили и растворы высокомолекулярных органических соединений, одиако теперь установлено, что эти растворы представляют собой не гетерогенные, а гомогенные системы, т, е. являются истинными растворами, хотя и имеют ряд признаков, характерных для коллоидных систем. [c.195]

    В природных нефтях, дистиллятах (начиная от керосиновых) и остатках т перегопки нефти содержится группа органических высокомолекулярных ооединений, объединяемых под общим названием смолисто-асфальтовые вещества. Согласно современной классификации смолисто-асфальтовые вещества делятся на следующие группы 1) нейтральные смолы 2) асфальтены 3) карбепы и карбоиды 4) асфальтогеновые кислоты и их ангидриды. [c.460]

    В жидких нефтяных системах размеры молекул растворенных веществ могут значительно отличаться от размеров моле-1чул растворителя. В настоящее время в литературе принято на- и.1вать молекулы с числом степеней свободы порядка 10 —10 макромолекулами [79J. Описание теплового движения макромолекул в растворах усложняется. Указанное отличие низкомолекулярных соединений от высокомолекулярных по числу сте-не1гей свободы может служить дополнением к классификации молекул по их физико-химическим свойствам (см. главу III, 2, раздел 2.2). [c.44]

    Вопрос о принадлежности высокомолекулярных гетероатомных соединений нефти к смолам или асфальтенам поднимался многими исследователями [228, 230, 237], которые использовали различные критерии. Наиример, Готлиб [237] пишет, что понятие асфальтены имеет столько же определений, сколько есть методов их выделения. Бестужев [238] указывает, что асфальтены не нашли своего места в общей классификации органических соединений. Однако предложение автора [238] о том, что асфальтены следует рассматривать как иоликонденспрованные молекулы, занимающие промежуточное место между микро- и макромолекулами, нельзя признать удовлетворительным. [c.268]

    Особый интерес для теории и практики представляет исследование сильно неидеальных полимерных систем в растворителях с бесконечно большим числом взаимодействующих между собой компонентов. По предложенной классификации [9] такие системы следует отнести к многокомпонентным высокомолекулярным стохастическим системам (ВМСС), учитывая случайное распределение компонентов системы. [c.31]

    Типовые вязкоупругие свойства высокомолекулярных полимеров основаны на их структуре, которая определяется типом, размером и строением макромолекул. У синтетических полимеров макромолекулы представляют собой цепочки с линейными, разветвленными или сетчатыми цепями. Различные структуры молекул могут образовать основу для классификации полимеров, например, по ASTM 1418-78. Ниже в качестве примера приводится классификация полимеров по зависимости их структурно-механи-ческих свойств от температуры (DIN 7724)  [c.51]

    В химии высокомолекулярных веществ принята следующая классификация. Реакции присоединения в приведенном выше смысле являются реакциями полимеризации и полиприсоединения реакции замещения представляют собой реакции поликонденсацин. Одиако, если исходить не из этой формальной классификации, а из кинетики реакции, то существует принципиальное различие между полимеризацией, с одной стороны, и поликонденсацией или полиприсоединеиием, с другой. [c.930]

    Классификация высокомолекулярных вешеств по строению молекулярных цепей карбоцепи и гетероцепи [c.932]

    Под поликонденсацией понимают химическую реакцию, при которой макромолекулы образуются в результате соединения би- или олигофункциональных молекул с одновременным отш,еплением прореагировавших групп. Большому числу известных реакций конденсации соответствует такое же большое число реакций поликонденсации, из которых здесь будут рассмотрены лишь важнейшие. Принятая классификация образующихся высокомолекулярных цепей позволяет одновременно описать и различные реакции поликонденсации. [c.944]

    Все кремнийорганические соединения делятся на две большие группы низкомолекулярные и высокомолекулярные. В основу классификации этих соединений положены кремнийводороды, или сила-ны общей формулы 51 Н2пн-2- Все остальные классы кремнийорганических соединений можно рассматривать как их производные. [c.182]

    Связаннодисперсные системы, обладающие в некоторой степени свойствами твердого тела, не следует смешивать с системами, имеющими твердую дисперсионную среду, у которых частички также не способны перемещаться относительно друг друга, так как вязкость дисперсионной среды огромная. Приведенная классификация применима не только к коллоидным системам, но и к растворам высокомолекулярных веществ. [c.18]


Смотреть страницы где упоминается термин Высокомолекулярные классификация: [c.53]    [c.54]    [c.167]   
Общая химическая технология (1964) -- [ c.531 , c.533 , c.535 ]

Общая химическая технология (1970) -- [ c.531 , c.534 ]




ПОИСК







© 2025 chem21.info Реклама на сайте