Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Лиофильные коллоидные системы, понятие

    Застудневание. Второй формой явной коагуляции лиофильных золей, включая в это понятие и растворы полимеров и коллоидные раствору в узком смысле, является процесс застудневания, или желатинирования. Точнее сказать, застудневание представляет собою лишь особый этап в общем процессе явной коагуляции. От другой формы явной коагуляции—высаливания—застудневание отличается тем, что при нем не происходит разделения системы на две фазы с образованием осадка, а вся система в целом переходит в особую, как бы промежуточную форму своего существования— студень (или по старой терминологии—гель). С этого промежуточного этапа явная коагуляция легко может перейти в заключительный этап также в виде двух форм или в виде высаливания, происходящего, как мы видели, при избыточном действии солей, или в виде так называемого синерезиса. [c.225]


    Коллоидно-мицеллярные растворы типичных ПАВ следует рассматривать как термодинамически устойчивые лиофильные коллоидные системы с равновесным распределением частиц дисперсной фазы по размерам. К таким растворам для описания их возникновения и свойств применимы все основные понятия и представления термодинамики, что в принципе невозможно в отношении лиофобных коллоидов. В частности, в случае коллоидных ПАВ могут быть рассчитаны тепловой эффект и энтропия мицеллообразования. [c.142]

    Коллоидные системы, образованные мицеллами новерхностно-актив-ных веществ или высокомолекулярных соединений, являются термодинамически равновесными и при данных условиях устойчивыми. К ним можно применять термин лиофильные коллоиды (но, разумеется, не к истинным растворам тех же веществ, не содержащим коллоидных мицелл). Понятие лиофильный не означает какой-то исключительной способности к образованию мощных сольватных оболочек, оно указывает лишь на то, что величина удельной свободной поверхностной энергии на поверхности раздела с окружающей дисперсионной средой сравнительно невелика и соизмерима с энергией теплового движения мицелл. [c.40]

    Четкую границу между лиофильностью или лиофобностью коллоидных систем не всегда можно установить. Так, золь кремниевой кислоты устойчив в изоэлектрическом состоянии. Гидрозоли кремниевых кислот, гидроксидов железа или алюминия при коагуляции удерживают большое количество воды и образуют студнеобразные системы. В то же время студнеобразный крахмал в водной среде при нагревании переходит в золь, обладающий многими свойствами гидрофобных систем. В подобных случаях часто невозможно провести границу между гетерогенной и гомогенной системами, и правило фаз Гиббса оказывается неприменимым. Поэтому для лиофильных коллоидных систем понятия дисперсной фазы>, дисперсионной среды>, золя и других условны, в той же мере, как понятие раствор для лиофобных систем. [c.157]

    Интересно проследить за изменением терминологии в коллоидной химии по мере ее развития. Первоначально растворы высокомолекулярных соединений относили к истинным коллоидам, а золи золота, иодистого серебра, берлинской лазури и др. называли случайными коллоидами. Затем для коллоидов типа золя золота было предложено название лиофобные коллоиды , а растворы высокомолекулярных веществ стали называть лиофильными коллоидами . Работами Г. Штаудингера, Г. Марка, В. А. Каргина и других ученых было показано, что между типичными коллоидными системами и растворами высокомолекулярных соединений существуют принципиальные различия. В настоящее время понятие коллоид не используется для растворов высокомолекулярных соединений, а под лиофильными коллоидными системами понимают высокодисперсные системы в том значении, которое указывалось в предыдущем параграфе. [c.12]


    Если дисперсионной средой является вода, то мы можем говорить о гидрофильных коллоидных системах мыл (рис. 115). Однако мыла способны к мицеллообразованию и в неполярных средах (в жидких углеводородах, взятых в качестве дисперсионных сред). В этом случае мицеллы мыл образуются в результате взаимного сцепления несольватированных (негидратиро-ванных) полярных групп молекул. Ядро мицеллы будет полярным, а оболочка — неполярной (см. рис. 116). Теперь мицелла сольватируется неполярными молекулами углеводорода ( маслом ), и мы получаем олеофильную коллоидную (двухфазную) систему. Мы видим, что в случае мыл понятие лиофильный  [c.425]

    В течение длительного времени считалось общепринятым, что все коллоидные системы, в отличие от истинных растворов, термодинамически неустойчивы, однако в последнее время [179] были развиты представления о том, что в определенных условиях и дисперсные (микрогетерогенные) системы термодинамически устойчивы, т. е. могут существовать без специальных стабилизирующих факторов. В отличие от таких лиофильных дисперсных систем лиофобные дисперсные системы принципиально термодинамически неустойчивы, понятие об их устойчивости носит кинетический характер для повышения их устойчивости необходимо введение стабилизаторов. [c.244]

    Дальнейшие исследования неопровержимо доказывали ошибочность таких взглядов. Становилось все более очевидным, что автоматически перенося представления о лиофобных коллоидах на лиофильные, нельзя объяснить самых основных особенностей поведения полимерных веществ. Эволюция представлений о коллоидных системах различных типов прослежена в ряде книг, например в Кратких очерках по физико-химии полимеров В. А. Каргина и Г. Л. Слонимского Отсылая читателя к этой книге для ознакомления с историей вопроса, необходимо все же и здесь воздать должное Г. Штаудингеру, который в 20-е годы впервые ввел понятие о макромолекуле [c.6]

    Однако если современные представления о высоко-полимерах развились и недавно, то сами полимеры очень давно служили постоянным объектом исследования классической коллоидной химии как лиофильные коллоиды . Действительно, свойства растворов полимеров, которые связаны с размерами частиц, объединяют их с другими коллоидными системами, но другие свойства, связанные с наличием гибких цепных молекул, настолько отличны, и своеобразны, что механическое перенесение на полимеры тех закономерностей, которые характерны для гидрофобных коллоидов, неизбежно приводило к ошибкам и недоразумениям. Это смешение понятий больших частиц и больших молекул, начало которому положили Фрейндлих и Кройт, сохранилось до сих пор во многих произведениях по коллоидной химии. Поэтому читателю приходится постоянно сталкиваться с одними и теми же объектами, например с каучуком, изображаемыми весьма различно в подавляющем большинстве оригинальных статей особые свойства полимеров рассматриваются как результат существования гибких цепных молекул в руководствах по коллоидной химии высокополимеры характеризуются часто как лиофильные коллоиды с частицами, обладающими свойствами фазы и необычным сродством к растворителям. [c.7]

    Таким образом, дисперсные системы могут быть разделены на два основных класса суспензоиды — высокодисперсные гетерогенные системы (лиофильные или лиофобные), частицы которых представляют собой агрегаты атомов или молекул, отделенные четко различимой физической границей раздела фаз от окружающей среды молекулярные коллоиды — гомогенные однофазные системы, устойчивые и обратимые, образующиеся самопроизвольно, с отдельными сольватированными макромолекулами в качестве кинетических единиц. Размеры макромолекул (хотя бы в одном измерении) относятся к коллоидной области дисперсности. По этой причине мы считаем целесообразным в нащей классификации отнести растворы ВМС к дисперсным системам, в частности к коллоидным (молекулярные коллоиды), несмотря на то, что гомогенность этих систем как будто не позволяет говорить ни о границе раздела фаз, ни о свободной поверхностной энергии в растворах ВМС. Как мы увидим далее (см. раздел V. 8), понятия гетерогенности и гомогенности относительны. [c.16]

    Ребиндер [1] рассматривает подобные лиофильные системы как полуколлоиды, поскольку они содержат в заметном количестве истинно растворимую часть вещества, являющуюся источником образования коллоидной фазы в окружающей дисперсной среде. Для таких ультрамикрогетерогенных систем с предельно высокой дисперсностью на ранней стадии их образования отпадает понятие агрегативной неустойчивости и необходимости в стабилизации. [c.183]

    Применительно к нефтяным дисперсным системам, являющимся типичными лиофильными коллоидами, традиционно используют прикладное понятие - коллоидную стабильность, включающее по существу, оба вида устойчивости. Понятие это впервые было введено в 30-х годах для оценки способности пластичных смазок удерживать (или в минимальной степени выделять) дисперсионную среду. Значительно позже стали определять и изучать коллоидную стабильность масел. Такая необходимость появилась прежде всего в связи с постоянным увеличением в товарных маслах количества присадок и с ужесточением температурных условий применения масел. В общем случае коллоидная стабильность в специальной литературе рассматривается в основном как. способность присадки или присадок не вьшадать из масляных растворов в осадок в условиях применения или при длительном хранении масла, т.е. их способность сохранять свою однородность. В настоящее время коллоидная стабильность масел в значительной степени определяет уровень качества многих товарных масел, хотя до сих пор практически не учитьшается при выборе оптимальных режимов их производства. [c.22]


    К такого рода системам относятся растворы крахмала, декстрина, желатина, белков, натуральный и синтетический каучук, мыла, ряд красителей, многочисленные продукты полимеризации, из которых многие находят себе применение в технике, как например пластмассы. Исторически сложилось так, что возникновение коллоидной химии связано с изучением такого рода веществ. В дальнейшем было выделено понятие о двух классах коллоидов одни из них были названы лиофобными, а другие — лиофильными. [c.327]

    Различают два основных класса дисперсных систем лиофильные и лиофобные. Лиофильные отличаются интенсивным взаимодействием частиц со средой, самопроизвольным диспергированием и термодинамической устойчивостью системы. Примерами лиофильных коллоидов могут служить глины, мыла, агрегаты высокомолекулярных соединений и т. п., образующие в водной или полярной среде ц граниченно устойчивые дисперсные системы. Лиофобные коллоиды, наоборот, характеризуются значительной энергией связи внутри дисперсной фазы, превышающей энергию взаимодействия последней со средой. В этом случае диспергирование осуществляется за счет затраты внешних сил — химических или механических. При этом образуются термодинамически неустойчивые коллоидные растворы, для которых понятие стабильности имеет лишь кинетический смысл. Некоторые лиофобные системы (например, красный золь золота) могут сохранять свою устойчивость сколько угодно долго, другие, наоборот, после образования быстро ее теряют (суспензии грубодисперсных частиц, концентрированные золи сульфидов металлов и т. д.). [c.7]


Смотреть страницы где упоминается термин Лиофильные коллоидные системы, понятие: [c.70]   
Коллоидная химия (1960) -- [ c.13 ]




ПОИСК





Смотрите так же термины и статьи:

Системы коллоидные

Системы коллоидные лиофильные



© 2025 chem21.info Реклама на сайте