Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Теория самосогласованного поля

    Члены в скобках зависят от координат только одного электрона, а члены, по которым проводится двойное суммирование, описывают двухэлектронные отталкивательные взаимодействия. Уравнение Шредингера с таким гамильтонианом можно рещать любым из описанных выще методов. Для небольщих систем (с числом электронов порядка десяти) удается провести прямые численные расчеты. Однако такой подход оказывается непрактичным для больщинства систем, представляющих интерес с точки зрения химии (например, в молекуле бензола содержится 42 электрона). Большинство расчетов систем сколько-нибудь значительного размера начинается с использования волновой функции в приближении независимых частиц. При этом чаще всего используется молекулярно-орбитальный подход теории самосогласованного поля Хартри — Фока. Расчеты по методу валентных связей применительно к большим молекулам используются гораздо реже. [c.234]


    Таким образом, если растворитель хороший (1 - 2х > 0), то теория самосогласованного поля предсказывает плавный переход от идеально газового поведения к поведению, характерному для системы с сильным взаимодействием, при Ф 1//V. Выше этой точки осмотическое давление становится пропорциональным Ф . В действительности, однако, как мы увидим, все эти предсказания даже качественно неверны. [c.78]

    КРИТИКА ТЕОРИИ САМОСОГЛАСОВАННОГО ПОЛЯ [c.80]

    Возвращаясь к фазовой диаграмме, изображенной на рис. 4.8, мы можем выделить три участка кривой сосуществования. Вблизи критической точки кривая сосуществования не может быть корректно описана теорией самосогласованного поля. Например, разность концентраций, сосуществующих при данной температуре (или х), фаз Ф и Ф", согласно теории самосогласованного поля, должна вести себя как [c.133]

    Экспериментальное исследование светорассеяния, выполненное группой английских исследователей [20], по-видимому, подтверждает результаты теории самосогласованного поля в области Ф Ф область же ф = ф еще подлежит обсуждению. [c.134]

    При некоторой концентрации ф имеется критическая точка С. Теория самосогласованного поля для такой системы основана на выражении для свободной энергии [c.137]

    Следующий вопрос связан с критическим поведением вблизи точки Ф = Ф . Так как клубки лишь начинают перекрываться в критической области, то параметр Р, введенный в разд. 4.2.6, оказывается порядка единицы напомним, что Р есть число других клубков, взаимодействующих с данным. В случае Р 1 критические показатели не должны следовать предсказаниям теории самосогласованного поля, они должны быть связаны с критическими показателями для обычного фазового перехода жидкость - газ. [c.138]

    Фр. Этот результат применим, в частности, к контактам АВ число таких контактов уменьшено за счет множителя ф . Таким образом, мы можем использовать теорию самосогласованного поля с перенормированным фактором расслоения [22] [c.138]

    Выражение (5.1) можно сравнить с данными экспериментов по светорассеянию [22]. Обычно эти данные интерпретировались в терминах приближения деревьев [23, 24], которое для у дает гораздо меньшее значение (у = 1). Это не удивительно в теории магнитных фазовых переходов скейлинговые критические показатели тоже сильно отличаются от критических показателей, даваемых теорией самосогласованного поля. Однако потребовалось около 30 лет, чтобы убедить экспериментаторов, что теория самосогласованного поля неудовлетворительна. [c.155]

    Отклонения от теории самосогласованного поля объясняются флуктуациями гель-фракции в пределах корреляционного объема [c.163]

    При приближении к точке В флуктуации растут, и интенсивность малоуглового светорассеяния / расходится. В теории самосогласованного поля типа теории Флори расходимость имеет вид 1 (у - V ) [c.179]


    Это согласуется с данными, полученными Танакой [39]. Тем не менее, поскольку каждый блоб взаимодействует только с определенным числом соседей (Р 1), нет оснований полагать, что возникающие критические показатели будут описываться теорией самосогласованного поля. [c.179]

    Бочее полное изложение теории самосогласованного поля можно найти в книге [142], [c.43]

    П-З. Теория самосогласованного поля для открытых оболочек и применение ее к л-электронным системам [c.131]

    ТЕОРИЯ САМОСОГЛАСОВАННОГО ПОЛЯ ДЛЯ ОТКРЫТЫХ ОБОЛОЧЕК 133 [c.133]

    Как известно [1], теория самосогласованного поля (ССП) в применении к молекулам была первоначально развита для случая систем с замкнутыми оболочками, то есть таких систем, для которых можпо считать, что доминирующим членом в разложении конфигурационного взаимодействия для волновой функции системы является единственный слэтеровский детерминант [c.131]

    Под обычной теорией самосогласованного поля (ССП) мы подразумеваем так называемый ограниченный метод Хартри— Фока (ОХФ), в рамках которого поведение каждых двух спаренных электронов может быть описано одной и той же пространственной орбиталью, так что соответствующие МСО имеют вид (р,а и q) . В неограниченном методе Хартри — Фока (НХФ) это ограничение снято и используются различные орбитали для разныхспинов. [c.185]

    Хотя в данной книге систематически рассматривается только ситуа1 я (и/а ) / 1, но в действительности, по-видимому, многие реальные полимеры (например, жесткие макромолекулы) отвечают случаю и/а ) когда теория самосогласованного поля имеет достаточно широкую область применимости. Подробнее о роли параметра у/а см. [26, 27 ]. - Прим, перев. [c.125]

    Аналогично и уравнение спинодали в полуразбавленной области можно получить с помощью теории самосогласованного поля, т.е. формулы (4.12) при = 1. Как обычно, опуская члены порядка Ф/Л , находим [c.134]

    Обсудим теперь ситуацию, когда хдв положительно, но очень мало. Начнем снова из разбавленной области. Когда мы, увеличивая концентрацию, достигнем порога перекрывания Ф, фактор хдв окажется недостаточным, чтобы вызвать расслоение. Мы можем продолжать увеличивать концентрацию, оставляя систему в однофазном состоянии, которое представляет собой полуразбавленную смесь цепей А м В. Взаимодействие Хд является в этом случае малым возмущением - в полной аналогии с задачей, обсуждавшейся в гл. 3. Как было показано в этой главе, вероятность контакта между двумя мономерами гораздо меньше предсказываемой по теории самосогласованного поля вероятность уменьшается за счет дополнительного множителя Ф , где ф есть полная концентрация мономеров, т.е. Ф = Фд + [c.138]

    Хотя рассмотрённый случай представляет самостоятельный интерес, нам не известно, ни одного примера системы, где бы он реализовался. Критическая точка, описываемая уравнением (4.68), не совсем обычна. Легко видеть, что параметр Р в данном случае гораздо больше единицы и поэтому критические показатели могут быть правильно вычислены с помощью теории самосогласованного поля. [c.139]

    Статистико-термодинамическая теория упорядочения,сформули-рэваниая на языке статических. концентрационных волн, позволяет развить общий подход, справедливый в рамках теории самосогласованного поля, а также получить универсальные формулы, пригодные для учета корреляции в любых сверхструктурах при наличии взаимодействия в произвольном числе координационных сфер. [c.102]

    Таким образом, в свежезакаленном мартенсите, в котором ближний порядок отсутствует, фазовый переход порядок — беспорядок протекает в соответствии с теорией самосогласованного поля, а температура фазового перехода описывается формулой (42.12). Поэтому при комнатной температуре фазовый переход будет происходить вблизи критического состава [c.352]

    Перейдем к рассмотрению вопроса о замыкающих соотношениях для уравнений гидромеханики псевдоожиженного слоя. Наиболее естественным путем решения этой проблемы было бы использование некоторых известных методов замыкания, разработанных в гидромеханике многофазных сред. Например, при замыкании уравнений механики концентрированных суспензий часто используется полуэмиирическая ячеечная модель взаимодействия частиц (5, 14—17]. При таком подходе возмущение, вносимое в поток каждой частицей, предполагается локализованным в пределах объема жидкости, непосредственно окружающего частицу (в пределах ячейки). Обычно рассматривают сферические ячейки. Дополнительная неопределенность в данной модели связана с выбором зависимости радиуса ячейки от объемной концентрации частиц и граничных условий на поверхности ячейки. Помимо ячеечной модели, в последнее время получил развитие подход, основанный на использовании представлений теории самосогласованного поля [18]. Однако для замыкания уравнений гидромеханики псевдоожиженного слоя (т. е. построения- выражений для неизвестных членов, входящих в данные уравнения) подобные подходы до настоящегб времени почти не использовались. Это связано с необходимостью учета в уравнениях гидромеханики псевдоожиженного слоя хаотического движения фаз, а также с тем, что диапазон чисел Рейнольдса (рассчитанных по диаметру твердой частицы) для псевдоожиженного слоя весьма широк. Например, для относительно крупных частиц число Рейнольдса может меняться от единицы до нескольких сотен, что затрудняет аналитическое исследование взаимодействия несущей фазы и твердых частиц. Учет хаотического движения твер- дых частиц и построение выражений для неизвестных членов в уравнециях гидромеханики возможен в рамках статистической теории псевдоожиженного слоя, которая будет излагаться в [c.11]


    Первым П. м. был метод Хюккеля, примененный к исследованию сопряженных орг. молекул с учетом только я-электронов (1930). Для аром, углеводородов такой расчет содержит всего лишь один параметр, характеризующий энергию я-взаимодействия соседних атомных орбиталей. В методе Паризера — Парра — Попла (метод ППП, 1953), в отличие от метода Хюккеля, явным образом рассматривается взаимод. между я-злектронами расчет ведется в рамках теории самосогласованного поля (см. Молекулярных орбиталей метод) с частичным учетом конфигурац. взаимодействия (см. Конфигурационного взаимодействия метод). Это усовершенствование оказалось необходимым для расчета сопряженных систем с гетероатомами. При этом структура нек-рых матричных элементов детализирована их выражают через величины, имеющие непосредственный физ. смысл (напр., потенциал иони ции или сродство к электрону) другие матричные элементы по-прежнему рассматривают как подгоночные параметры. [c.472]

    Известно, что в общем случае область применимости того или иного варианта метода самосогласованного поля определяется так называемым числом Гинзбурга 01 [23 ]. В полимерной системе, как показывает анализ, С1 (г /а ) [24, 25 ]. Хотя в данной книге систематически рассматривается только ситуэ1 я но в действительности, по-видимому, многие реальные полимеры (например, жесткие макромолекулы) отвечают случаю (ь/а ) 1, когда теория самосогласованного поля имеет достаточно широкую область применимости. Подробнее о роли параметра у/а см. [26, 27 ]. - Прим, перев. [c.125]


Смотреть страницы где упоминается термин Теория самосогласованного поля: [c.252]    [c.53]    [c.472]    [c.133]    [c.243]    [c.243]    [c.520]    [c.520]    [c.133]   
Смотреть главы в:

Флуктуационная теория фазовых переходов Изд.2 -> Теория самосогласованного поля

Электронные свойства ароматических и гетероциклических молекул -> Теория самосогласованного поля


Гидромеханика псевдоожиженного слоя (1982) -- [ c.11 ]




ПОИСК





Смотрите так же термины и статьи:

Поляна теория



© 2025 chem21.info Реклама на сайте