Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Отвердевание кипения

    Активность и коэффициент активности можно определить на основании экспериментальных данных (по повышению точек кипения и понижению точек отвердевания растворов, по давлению насыщенного пара над растворами и др.). [c.252]

    Так как для разбавленных растворов понижение давления пара пропорционально концентрации, то и повышение температуры кипения и понижение температуры отвердевания разбавленных растворов пропорционально их концентрации. При записи данной зависимости (в отличие от закона Рауля) концентрацию принято выражать моляльностью. Таким образом [c.242]


    Так как для разбавленных растворов понижение давления пара пропорционально концентрации, то и повышение температуры кипения и понижение температуры отвердевания разбавленных растворов пропорционально их концентрации. В данном случае (в отличие от закона Рау- [c.153]

    Изложенное означает, что энтропия является мерой неупорядоченности состояния системы. Она растет не только с повышением температуры, но и при плавлении (и возгонке) твердого вещества, при кипении жидкости, т. е. при переходе вещества из состояния с меньшей энергией в состояние с большей энергией. Ростом энтропии сопровождаются и процессы расширения, например газа, растворения кристаллов, химическое взаимодействие, протекающее с увеличением объема, например диссоциация соедннения, когда вследствие роста числа частиц неупорядоченность возрастает. Наоборот, все процессы, связанные с увеличением упорядоченности, такие как охлаждение, отвердевание, конденсация, сжатие, кристаллизация из растворов, химическая реакция, протекающая с уменьшением объема, например полимеризация, сопровождаются уменьшением энтропии. Возрастание энтропии вещества при повы- [c.177]

    Чистая вода прозрачна и бесцветна. Она не имеет ни запаха, ни вкуса. Вкус и запах воде придают растворенные в ней примесные вещества. Многие физические свойства и характер их изменения у чистой воды аномальны. Это относится к температурам плавления и кипения, энтальпиям и энтропиям этих процессов. Аномален и температурный ход изменения плотности воды. Вода имеет максимальную плотность при +4°С. Выше и ниже этой температуры плотность воды уменьшается. При отвердевании происходит дальнейшее резкое уменьшение плотности, поэтому объем льда на 10% больше равного по массе объема воды при той же температуре. Все указанные аномалии объясняются структурными изменениями воды, связанными с возникновением и разрушением межмолекулярных водородных связей при изменении температуры и фазовых переходах. Аномалия плотности воды имеет огромное значение для жизни живых существ, населяющих замерзающие водоемы. Поверхностные слои воды при температуре ниже +4°С не опускаются на дно, поскольку при охлаждении они становятся более легкими. Поэтому верхние слои воды могут затвердевать, в то время как в глубинах водоемов сохраняется температура +4°С. В этих условиях жизнь продолжается. Если бы плотность льда была больше плотности воды (как у большинства других веществ), все водоемы на Земле постепенно промерзли бы до дна и живые организмы в них погибли бы. Кроме того, получаемой от Солнца теплоты (включая теплое время года) недостаточно для оттаивания всей массы воды, если бы она превратилась в лед. [c.300]


    Т — температура отвердевания (кипения) растворителя  [c.173]

    Температуры кипения и отвердевания растворов. В прямой зависимости от давления насыщенного пара раствора нелетучего вещества находится температура кипения раствора. [c.241]

    Во второй и третьей частях, посвященных реакционной способности веществ, главное внимание уделено их химическому сродству. Разумеется, вопросы кинетики не менее (а зачастую даже более) важны, чем вопросы статики процессов. Однако, если принять во внимание специфичность и большое разнообразие скоростных факторов и также огромную сложность учета их влияния на реакционную способность веществ, изменение представлений о механизме протекания процессов по мере углубления знаний и, наконец, то обстоятельство, что большинство подлежащих рассмотрению вопросов связано со статикой различных процессов, то этот выбор вряд ли можно счесть спорным. Действительно, и закон действующих масс, и принцип Ле Шателье, и многие свойства растворов (в их числе растворимость, температуры отвердевания и кипения, давление пара), и процессы в них (диссоциация, нейтрализация, сольватация, комплексообразование, гидролиз и т.д.)—это прежде всего проблемы равновесия. Вместе с тем надо отчетливо показать, что вопросы статики и кинетики это проблемы возможности и действительности и что значение энергетического (термодинамического) и кинетического факторов неодинаково для различных типов процессов для реакций в растворах электролитов (например, при нейтрализации), для высокотемпературных реакций и других быстрых процессов кинетические соотношения не существенны наоборот, для медленных реакций и таких, продукты которых гораздо устойчивее исходных веществ (например, при горении), не играют ощутимой роли равновесные соотношения. [c.4]

    Температуры кипения и отвердевания [c.152]

    Основы теории электролитической диссоциации. В 1887 г-Вант-Гофф установил, что определенное экспериментально осмотическое давление в растворах солей, кислот и оснований превышает вычисленное по уравнению (2.59). Подобные отклонения измеренных величин от вычисленных по соответствуюш,им уравнениям наб.5юдаются в сторону повышения для температуры кипения и в сторону понижения для температуры отвердевания этих растворов. Так, например, молекулярная масса Na l равна 58,5, а на основании криоскопических измерений она оказалась равной при-щ мерно 30. Не зная, чем можно объяснить эти отклонения, но стремясь сделать соответствующие уравнения пригодными для этих растворов, Вант-Гофф ввел в них поправочный множитель i, названный изотоническим коэффициентом . Подставляя коэффициент i в уравнение для расчета осмотического давления и в уравнения законов Рауля, получаем соотношения, пригодные для описания разбавленных растворов всех веществ, в том числе и для растворов солей, кислот и оснований  [c.246]

    Связь между повышением температуры кипения и понижением температуры отвердевания можно показать и с помощью рис. 49. На нем представлены четыре кривые, изображающие температурную зависимость изобарного потенциала четырех фаз — твердого, жидкого и газообразного растворителя и раствора. Точка а отвечает кипению, точка о — отвердеванию растворителя точки Ь и й — соответственно кипению и отвердеванию раствора. В каждой из этих точек в соответствии с общими критериями равновесия соблюдается равенство изобарных потенциалов сосуществующих фаз. [c.155]

    Активность и коэффициент активности можно определить экспериментально по повышению точек кипения и понижению точек отвердевания растворов, а также по давлению пара над раствором и другими методами. [c.181]

    Критические параметры t , р , константы а и 6 уравнения Ван-дер-Ваальса, температуры отвердевания и температуры кипения при 760 мм рт. ст [c.110]

    Возможны два метода расчета активности и коэффициента активности. Первый метод основан на сравнении свойств реального раствора со свойствами идеального раствора, при этом предполагается, что при очень большом разбавлении поведение раствора приближается к идеальному. Уравнения зависимости свойств от концентрации раствора экстраполируются на бесконечное разбавление, т.е. на идеальное состояние, и активности в этих уравнениях заменяются на непосредственно измеряемые величины — концентрацию, давление насыщенного пара над раствором, изменение температур кипения или отвердевания и т. п. Затем проводится расчет полученных экстраполяцией величин на высокие концентрации веществ в реальных растворах. [c.290]

    Связь между повышением температуры кипения и понижением температуры отвердевания можно показать с помощью рис. 58. На нем представлены четыре кривые, изображающие температурную зависимость энергии Гиббса четырех фаз — твердого, жидкого и газообразного растворителя и раствора. Точка а отвечает кипению, точ- [c.163]


    Изложенное означает, что энтропия является мерой неупорядоченности состояния системы. Энтропия растет не только с повышением температуры, но при переходе вешества из состояния с меньшей энергией в состояние с большей энергией, например при плавлении (и возгонке) твердого вещества, при кипении жидкости. Ростом энтропии сопровождаются и процессы расширения газа, растворения кристаллов, химическое взаимодействие, протекающее с увеличением объема, например диссоциация соединения, когда вследствие роста числа частиц их неупорядоченность возрастает. Наоборот, все процессы, связанные с увеличением упорядоченности системы, такие как охлаждение, отвердевание, конденсация, сжатие, кристаллизация из растворов, химическая реакция, протекающая с уменьшением объема, например полимеризация, сопровождаются уменьшением энтропии. Возрастание энтропии вещества при повышении температуры иллюстрирует рис. 2.5. Влияние давления на энтропию можно показать на следующем примере при Т - 500 К и р-101 кПа энтропия аммиака составляет 212 Дж/(моль К), при 7 -500 К и р-30300 кПа эта величина равна 146 Дж/(моль-К), т. е. с увеличением давления энтропия снижается, но незначительно. [c.189]

    Температуры кипения и отвердевания растворов. Из [c.119]

    Второй закон Рауля повышение температуры кипения или понижения температуры отвердевания разбавленных растворов неэлектролитов пропорциональны числу частиц растворенного вещества и не зависят от его природы  [c.120]

    ДГ=Д< — величина (в °К или °С) понижения точки отвердевания или повышения точки кипения раствора по сравнению с точкой отвердевания или кипения чистого растворителя  [c.366]

    Кипение кислорода. . . —182,97 Возгонка твердого СОг. —78,5 Отвердевание ртути. ... —38,87 [c.382]

    Плавление маннита. ... 166,0 ъ эвтектической смеси 61,9%8п-1-38,1%РЬ 183,3 Кипение нафталина. ... 217,96 Отвердевание олова. . . . 231,85 Кипение бензофенона. . . 305,9 Отвердевание кадмия. . . 320,9 свинца. ... 327,3 [c.382]

    Поскольку ДГкип и ДГ<1тв изменяются про- порционально чнслу молей растворенного вещества, а каждый моль содержит одинаковое число молекул (6,022- о эти характеристики раствора зависят только от числа частиц растворенного вещества. Отсюда повышение температуры кипения и понижение температуры отвердевания растворов пропорциональны числу частиц растворен ного вещества и не зависят от его природы (второй закон Рауля), [c.243]

    К этому времени Вант-Гофф (1887) установил, что в растворах солей, кислот и оснований изменение осмотического давления превышает вычисленное по уравнению (IV.9) Подобные отклонения измеренных величин от вычислен ных по соответствующим уравнениям наблюдаются в сто рону повышения для температуры кипения и в сторону по нижения для температуры отвердевания этих растворов Так, например, молекулярный вес газообразного Na l равен 58,5, а на основании криоскопических измерений (стр. 158) он оказался равным примерно 30. [c.164]

    В 1968 г. была принята международная практическая температурная шкала (МПТШ-68). Определяющими точками в ней являются тройная точка воды (273,16 К=0,01 °С) и точка кипения воды при 1 атм (373,15 К=ЮО°С). Полное описание шкалы содержит прецизионные значения температуры, приписанные остальным определяющим точкам в интервале от 13,81 К (—259,34°С) — тройная точка водорода, до 1337,58 К (1064,43 °С) —точка отвердевания золота. Определены также вторичные точки сравнения, удлиняющие шкалу до 3696 К (3422 °С), что соответствует точке плавления вольфрама. [c.25]

    Во второй и третьей частях главное внимание уделено химическому сродству. Разумеется, вопросы кинетики не менее (а зачастую даже более) важны, чем вопросы статики процессов. Однако если принять во внимание специфику и большое разнообразие кинетических факторов, а также огромную сложность учета их влияния на реакционную способность веществ, изменение представлений о механизме протекания процессов по мере углубления наших знаний и, наконец, то обстоятельство, что бол1 шинство подлежащих рассмотрению вопросов связано со статикой различных процессов, то этот выбор вряд ли можно счесть спорным. Действительно, и закон действующих масс, и принцип Ле Ша-телье, и многие свойства растворов (в их числе растворимость, температуры отвердевания и кипения, давление пара), и процессы в них (диссоциация, нейтрализация, сольватация, комплексообразование, гидролиз и т. д.) — это прежде всего проблемы равновесия. Вместе с тем надо отчетливо показать, что вопросы статики и кинетики — это проблемы возможности и действительности и что значение энергетиче- [c.4]

    TQJQ — понижение температуры отвердевания — повышение температуры кипения Ар — понижение давления пара раствора (по сравнению с чистым растворителем) [c.167]

    Если данному (например, атмос([зерному) давлению отвечает горизонталь тп, то абсцисса точки а отвечает температуре кипения растворителя, а абсцисса точки Ь — температуре кипения раствора, т. е. = аЬ . Опустив из точки а перпендикуляр на кривую сШ, получим точку Ь ] ее-ордината равна давлению пара над раствором, т. е. понижение давления пара над раствором Ар = аЬ . Наконец, расстояние между абсциссами точек О и равно понижению температуры отвердевания АТ , . Из рис. 60 видно, что чем концентрированнее раствор, т. е. чем ниже будет пунктирная кривая, тем больие будут значения Ар, АТ,, и ДТ . [c.168]


Смотреть страницы где упоминается термин Отвердевание кипения: [c.182]    [c.179]    [c.155]    [c.159]    [c.165]    [c.162]    [c.163]    [c.164]    [c.172]    [c.260]    [c.263]    [c.624]   
Краткий курс физической химии Изд5 (1978) -- [ c.312 ]




ПОИСК





Смотрите так же термины и статьи:

Отвердевание

Температуры кипения и отвердевания

Точка замерзания отвердевания кипения



© 2025 chem21.info Реклама на сайте