Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Высокотемпературные реакции

    Регенерацию теплоты можно проводить непрерывным способом, когда в качестве теплового агента применяется, например, твердый материал небольшого зернения, жидкость или даже газ, движущиеся в системе и поглощающие периодически теплоту горячего носителя, а затем отдающие ее материалу, который нужно нагреть. Такая установка, использующая твердые гранулы (или мелкие камни, гальку), показана на рис. 1Х-39. Она может применяться для нагревания воздуха, водорода, метана, водяных паров или других газообразных веществ в различных промышленных процессах. Гранулы диаметром 8—15 мм нагреваются в верхней камере 2 при непосредственном соприкосновении (прямой теплообмен) с отдающим теплоту носителем, которым может быть любой газ с высокой температурой (например, продукты сгорания). После перемещения в нижнюю камеру 3 гранулы отдают теплоту газам, которые нужно нагреть. Подъемником 1 гранулы транспортируются снова на верх камеры 2. В среднем цикл перемещения гранул составляет 30—50 мин. Нижняя камера может также использоваться как реактор для проведения высокотемпературных реакций в газовой фазе (например, для каталитического крекинга нефтепродуктов) тепловой агент, в этом случае одновременно является катализатором. [c.387]


    Обычно процесс рассматривается в условиях зажигания горючей смеси при локальном ее разогреве до температуры воспламенения с последующим устойчивым горением с пламенем. Для начала быстрой высокотемпературной реакции возможен другой режим одновременное нагревание до умеренной температуры всего объема горючей смеси (горючий газ и тот или иной окислитель), заключенной внутри некоторого сосуда. По мере повышения температуры смеси в сосуде начинается реакция окисления со сравнительно небольшой скоростью. За счет выделяющегося тепла смесь разогревается, и скорость реакции увеличивается, что в свою очередь приводит к нарастающему разогреву газа. При этом скорость реакции и разогрев увеличиваются очень быстро происходит неограниченное ускорение реакции, именуемое тепловым взрывом или самовоспламенением. [c.125]

    Эта реакция принадлежит к уникальному классу реакций. Ее проводят в режиме окислительного дегидрирования, но она не является каталитической. Ранее говорилось, что дегидрирование этана в этилен — относительно высокотемпературный процесс. Дегидрирование метана в ацетилен представляет собой чрезвычайно высокотемпературную реакцию и идет при 1300— 1600°С, когда равновесие наиболее сильно сдвинуто в сторону образования этилена. Очевидно, металлические реакторы не могут быть использованы для реакции парциального окисления природного газа (метана) в силу того, что реакция происходит при температуре, превышающей температуру плавления нержавеющей стали или любых других распространенных металлов. Поэтому реакторы футеруют огнеупорным кирпичом, а теплообмен и теплоотвод осуществляют до контакта горячих газов с неметаллическими поверхностями. При более низких температурах контакт газов с металлическими поверхностями допустим, и окончательный отвод тепла производится в металлическом теплообменнике. Сильно нагретые продукты реакции охлаждаются путем впрыскивания воды непосредственно в газовый поток (рис. 4). При этом вода превращается в пар, который вместе с продуктами должен быть охлажден экономично и с пользой. При получении ацетилена его быстрое охлаждение является одной из решающих операций, препятствующей гидрированию ацетилена в этилен или этан. [c.148]

    При переходе к высокотемпературным реакциям пользование стандартными энергиями Гиббса и условиями А0°<0 и АС°>0 не приводит к однозначному решению — осуществима или неосуществима реакция при заданной температуре Т. Такое решение может быть принято лишь на основе значения энергии Гиббса А0г 0т< О и ДСт.>0), которая может быть вычислена, если известны энтальпия АНг и изменение энтропии при той же температуре. В более общем случае АОт реакции зависит также от давления и концентраций реагирующих веществ. Тем не менее, руководствуясь стандартными энергиями Гиббса АС°, можно в ряде случаев приблизительно решить, осуществима ли реакция при данных условиях. Так, если. А0°<0, реакция возможна если А<7°>0, но менее 80 кДж/молЬ( реакция возможна при определенной концентрации, температуре и давлении если же А0°>80 кДж/моль, предсказать возможность реакции затруднительно и для однозначного решения необходимо определить АО при заданных значениях Ри Т.  [c.83]


    Высокотемпературную реакцию водяного пара с алканами, описываемую уравнениями (II) и (III), проводят в присутствии нанесенных Ni-катализаторов. При этом главными проблемами являются  [c.148]

    Во второй и третьей частях, посвященных реакционной способности веществ, главное внимание уделено их химическому сродству. Разумеется, вопросы кинетики не менее (а зачастую даже более) важны, чем вопросы статики процессов. Однако, если принять во внимание специфичность и большое разнообразие скоростных факторов и также огромную сложность учета их влияния на реакционную способность веществ, изменение представлений о механизме протекания процессов по мере углубления знаний и, наконец, то обстоятельство, что большинство подлежащих рассмотрению вопросов связано со статикой различных процессов, то этот выбор вряд ли можно счесть спорным. Действительно, и закон действующих масс, и принцип Ле Шателье, и многие свойства растворов (в их числе растворимость, температуры отвердевания и кипения, давление пара), и процессы в них (диссоциация, нейтрализация, сольватация, комплексообразование, гидролиз и т.д.)—это прежде всего проблемы равновесия. Вместе с тем надо отчетливо показать, что вопросы статики и кинетики это проблемы возможности и действительности и что значение энергетического (термодинамического) и кинетического факторов неодинаково для различных типов процессов для реакций в растворах электролитов (например, при нейтрализации), для высокотемпературных реакций и других быстрых процессов кинетические соотношения не существенны наоборот, для медленных реакций и таких, продукты которых гораздо устойчивее исходных веществ (например, при горении), не играют ощутимой роли равновесные соотношения. [c.4]

    Электронные спектры позволяют также обнаружить свободные радикалы и другие промежуточные продукты сложных газовых реакций. Полученные из спектров молекулярные константы дают возможность определять теплоты образования молекул из простых веществ и по формулам статистической термодинамики рассчитывать химическое равновесие в реакциях с участием газов, а значит, и управлять процессами горения и другими высокотемпературными реакциями. [c.168]

    Для большинства высокотемпературных реакций используются металлические катализаторы. Они могут быть в виде металла, нанесенного на тугоплавкий носитель, такой, как плавленый оксид алюминия, смешанный оксид алюминия и магния, алюмосиликат, например муллит, алюминат магния (шпинель) и смешанный тугоплавкий оксид алюминия и хрома. Оксид хрома может обладать собственной каталитической активностью, и поэтому его следует тщательно исследовать, прежде чем использовать в качестве носителя. Наоборот, если возможно получить бифункциональный катализатор, в котором действие металла дополняется действием носителя, то хром в этом случае может принести существенную пользу. К числу металлов, используемых как катализаторы дегидрирования, принадлежат медь, серебро и иногда золото. Такие благородные металлы, как платина, палладий, родий и рутений, можно использовать при очень высоких температурах, а серебро недостаточно устойчиво при температурах выше 700 °С. [c.142]

    Углеводородные пламена. Процесс окисления различных углеводородов начинается при разных температурах, однако наиболее характерные температуры, при которых начинается горение с одновременным выделением тепла и света, — 500 °С и выше. Когда окисление протекает при низких температурах, образуются так называемые холодные пламена, которые предшествуют воспламенению и окислению углеводородного топлива. Они существенно отличаются от высокотемпературных реакций, особенно в отношении скорости протекания и управляемости, но в холодных пламенах все же могут образовываться недолговечные промежуточные соединения, которые способствуют поддержанию высокотемпературных пламен. [c.99]

    Дегидрирование — более высокотемпературная реакция, ведущая к накоплению в продуктах крекинга и пиролиза циклоолефинов и ароматических углеводородов. Реакции благоприятствует пониженное давление  [c.179]

    При пиролизе газообразных углеводородов, проводимом для получения бензола (см. выше), жидкие продукты разделяют ректификацией. Тяжелый кубовый остаток, кипящий выше 200°, состоит в значительной мере из многоядерных углеводородов, среди которых преобладают нафталин и антрацен [55]. Нафталин, антрацен и высшие многоядерные углеводороды образуются также при других высокотемпературных реакциях. Например, коксование при перегонке нефти рассматривается как процесс прогрессирующей конденсации ароматических ядер. [c.268]

    Неравновесная кинетика не может основываться на наиболее общем и прямом подходе, опирающемся на решение полной системы кинетических уравнений для заселенности отдельных кванто ых состояний с использованием сечений элементарных процессов. Гораздо более продуктивен упрощенный подход, использующий основные макроскопические характеристики реагирующей системы — характерное время химической реакции и характерное время релаксации Неравновесные эффекты становятся все более существенными по мере увеличения отношения Тр(.л/Тх . Поскольку большинство химических реакций имеет значительно более крутую температурную зависимость, чем релаксационные процессы, то ясно, что сильные отклонения от равновесия наиболее вероятны в высокотемпературных реакциях. [c.64]


    Рассмотренный механизм с энергетическим ускорением имеет весьма общий характер и применим для целого класса высокотемпературных реакций распада (HNз, ЫаО, Оз, ВгО , N0 и др.). [c.109]

    Адиабатическое сжатие происходит в адиабатической пушке Принцип действия газ из ресивера приводит в движение поршень, который сжимает исследуемый газ в сжимаемом газе повышаются давление и температура по окончании сжатия поршень начинает двигаться в противоположную сторону, исследуемый газ расширяется и охлаждается. Благодаря инерции поршня (при достаточно большой его массе) основное сжатие газа происходит при торможении, когда давление сжимаемого газа больше, чем сжимающего. Это позволяет производить сильное сжатие и получать высокие давления (до 10 кгс/см и температуры (до 9000 К) при сравнительно небольшом давлении газа в ресивере (100—150 кгс/с.м ). Важная особенность пушки — большие скорости охлаждения при расширении (10 К-с ), что на 3 порядка превышает скорость охлаждения газа при его естественном остывании. Это позволяет осуществить закалку высокотемпературной газовой смеси и изучить состав продуктов высокотемпературной реакции. Реагирующий газ разбавляют инертным (в 10 — 10 раз), чтобы реакция не влияла на процесс сжатия. Давление, температура и положение поршня находят из уравнений р = ро ( ж ) , Т= [c.360]

    Метод ЭДС высокотемпературных гальванических элементов с солевыми электролитами получил широкое распространение в химии для изучения термодинамики некоторых высокотемпературных реакций, определения коэффициентов активности ионов в расплавах с участием субсоединений различных элементов, значений [c.104]

    Статистические расчеты удобны в том случае, когда нет возможности определить термодинамические параметры реагентов, но известны или постулированы свойства молекул. Этим и определяется область применимости статистических расчетов. В настоящее время такие расчеты незаменимы в ряде случаев а) для реакций с участием нестойких соединений б) для высокотемпературных реакций в газах в) для оценки любых возможных изменений в структуре молекул и их влиянии на положение равновесия г) для описания реакций изотопного обмена. Анализ подобных эффектов естественно проводить с учетом молекулярных параметров веществ. [c.248]

    Хотя эта реакция применяется нечасто, такое восстановление можно осуществить амальгамой натрия (пример а) или высокотемпературной реакцией с муравьиной кислотой нли ее солями (примеры 6.1, 6.2 и 6.5). [c.46]

    При переходе к высокотемпературным реакциям пользование стандартными энергиями Гиббса и условиями [c.88]

    Ня другом этапе этой работы изучали высокотемпературные реакции, в которые вступают обычные катализаторы риформинга и крекинга. Катализаторы облучали в погруженном ядерном реакторе. Они были завернуты в алюминиевую фольгу и запаяны в сварных контейнерах, из которых был полностью откачан воздух. Во время облучения измеряли температуру, интенсивность гамма-излучения и поток быстрых и медленных (тепловых) нейтронов. Облучение продолжалось несколько недель общая дозировка составляла около 6. 101 медленных нейтронов на 1 см , 7 101 быстрых нейтронов на 1 см и 3 10 рад ч гамма-излучения. Во время облучения температуру поддерживали в пределах примерно 93—149° С. После облучения катализаторы оказались сильно радиоактивными для снижения радиоактивности до уровня, допускавшего проведение дальнейших опытов, их пришлось хранить при комнатной температуре в течение 4—8 недель. После этого определяли каталитическую активность облученного и необлученного катализаторов в опытах, условия которых приведены ниже.  [c.161]

    Последующее изложение не претендует на исчерпывающий характер и служит лишь для ознакомления читателей, недостаточно хорошо знакомых с коррозией, с некоторыми фундаментальными понятиями, связанными с высокотемпературными реакциями газов и металлов. Особенный интерес здесь представляют вопросы морфологии и пространственного распределения продуктов реакций, непосредственно определяющие влияние среды на механические свойства материала, что подтверждается и объясняется данными по изменению структуры и химического состава при окислении и коррозии. [c.19]

    При исследовании высокотемпературных реакций между металлом или сплавом и газами, способными образовывать не только оксиды, но и сульфиды, карбиды и т. д., необходимо, как и в случае смешанных оксидных фаз на сплавах, использовать изотерми- [c.22]

    Очевидно, что на ход реакции оказывают существенное воздействие сорбционные явления 2, так как пористый уголь является хорошим поглотителем. Считается возможным как проникновение кислорода в пространство между базисными плоскостями, так и адсорбция его поверхностью углерода. Опытным путем наблюдалось с помощью микрофотографии образование шестиугольных углублений при реакциях с умеренной температурой и разрушение кристаллов по к)раям при высокотемпературных реакциях. [c.64]

    Закономерности восстановления окислов железа, кобальта а никеля метаном. Восстановление указанных окислов метаном раньше относили к разряду высокотемпературных реакций. В наших работах было доказано, что эти реакции люгут протекать при сравнительно невысоких температурах (300—600° С). Таким образом, инертность метана в реакциях данного типа ранее преувеличивалась. Восстановление окислов металлов с применением метана в качестве восстановителя имеет некоторые особенности. Так, мы обнаружили, что существует температурная граница (около 600° С), ниже которой полное восстановление окиси железа (до метана) не происходит процесс останавливается на стадии образования закиси — окиси железа. Селективность восстановления окиси железа до закиси — окиси как закономерное (для определенных условий) явление не было известно. Для других восстановителей (водорода, окиси углерода) такая селективность не характерна. [c.102]

    Г. Высокотемпературные реакции в твердой фазе [c.198]

    Большая часть ортофосфатов металлов, как указано в табл. 7, была приготовлена преимущественно тремя методами осаждением малорастворимых ортофосфатов, кристаллизацией из равновесных растворов и высокотемпературными реакциями в твердой фазе. Высокотемпературные реакции обычно пригодны только для получения трехзамещенных фосфатов, не содержащих гидратной или связанной воды. Для получения соединений этими методами синтез нужно проводить при температурах ниже температур плавления и стеклования. Методами осаждения не всегда получают термодинамически устойчивые твердые фазы, и состав осадков может изменяться в зависимости от условий осаждения. Иногда трудно воспроизвести получение ортофосфатов методом осаждения, если условия реакции описаны недостаточно подробно. Методы кристаллизации позволяют получить соединения определенного состава, соответствующие фазовой диаграмме, если кристаллизация производится не слишком быстро. Для надежности методы кристаллизации указаны в таблице только в тех случаях, когда имеются данные о фазовом равновесии. [c.215]

    Цианамид HjN— N получается в виде кальциевой соли в результате высокотемпературной реакции карбида кальция с азотом. [c.878]

    Тиофен в промышленном масштабе можно получить в результате высокотемпературной реакции н-бутана с серой [c.1018]

    Тепловое самовоспламенение. До сих пор мы рассматривали процесс горения в условиях поджигания холодной горючей среды путем ее локального разогрева до очень высокой температуры (большей Ть), заведомо создающего очаг пламени. Возможен, однако, и другой режим возникновения быстрой высокотемпературной реакции при одновременном нагревании до умеренной температуры всего объема горючей среды, заключенной внутри некоторого реактора. Происходящие при этом процессы посят совсем иной характер. [c.22]

    Алкилмеркаптаны можно также получать, присоединяя НгЗ к олефиновым углеводородам. Реакция идет на кислотных катализаторах, например безводном А1С1з при 0°С или нанесенной фосфорной кислоте при 80°С, В отличие от высокотемпературной реакции спирта с сероводородом, которая легче всего идет с первичными спиртами, этот процесс наилучшим образом идет с образованием третичных алкилмеркаптанов. При добавлении меркаптана к олефину образуется некоторое количество диалкилсульфидов. [c.337]

    При переходе к высокотемпературным реакциям использование стандартных энергий Гиббса (АО адв) и условий ДО°29в < О и ДО°298 > О не приводит к однозначному решению — осуществима или неосуществима реакция при заданной температуре Т. Такое решение может быть принято лишь на оскове значения изменения изобарного потенциала при- соответствующей температуре ДОт (АОт < О и ДОт >0), которое может быть вычислено, если известны изменение энтальпии АНт и изменение энтропии АВт при той же температуре. В более общем случае ДОт реакции зависит также от давления и концентраций реагирующих веществ. Однако, руководствуясь стандартными значениями изобарного потенциала ДО°29,, можно в ряде случаев приблизительно решить,, осуществима ли реакция при данных условиях. Так, еслиДО°2в8С [c.79]

    Большинство высокотемпературных реакций ппликоиден-сации проводится в запаянных ампулах в отсутствие воздуха, чтобы свести до минимума окрашпвание в результате окисления и потери исходных продуктов. Таким путем можно получить полиамиды, полиэфиры, некоторые полиуретаны, а также многие смешанные полимеры. [c.18]

    По данным [42], прн превращениях эквимолярной смеси СН и СОа на катализаторе — платина на активированном угле процесс (30) прп температуре 600—650° С не идет совсем, а процесс (29) протекает с глубиной превращения 41%. При температуре 900° С глубина превращения по реакции (30) достигает лишь 3%, а по реакции (29) — 87%. На березовом активированном угле скорости реакций (30) и (29) соизмеримы в интервале температур 700—900° С и превращение идет на 10 и 40% соответственно. На силикагеле при температуре до 750° С проходит лишь процесс (30), правда, с небольшой глубиной, а при более высоких температурах скорости процессов (30)и (29)становятся соизмеримыми. На рис. 18 и 19 приведены данные по превращениям эквимолярной смеси и на некоторых других катализаторах. Все они указывают на большое влияние природы катализаторов, являющейся одним из факторов, определяющих кинетические условия процессов, на превращение смесей СН4 и СО2. Оно сказывается на соотношении скоростей реакций (30) и (29), а также многих других, в частности вторичных реакций конверсии метана, окиси углерода и продуктов уплотнения водой, получающейся по реакции (30), а также высокотемпературной реакции окисления продуктов уплотнения двуокисью углерода [c.201]

    Молибдаты щелочноземельных металлов и бериллия могут быть получены осаждением из растворов, при высокотемпературных реакциях в твердых фазах и обменными реакциями в расплавах. Так, молибдат кальция осаждается в виде белого мелкокристаллического осадка из раствора a ia и Na2Mo04  [c.174]

    Следует отметить, что в общем случае соединения фосфор — азот, обсуждаемые в данном обзоре, нелегко поддаются разрыву колец и реакциям расщепления. Исключениями являются высокотемпературные реакции полимеризации и некоторые реакции с ме-таллорганическими реагентами. Эта тенденция к сохранению циклических структур находится в резком противоречии с поведением соединений сера — азот, для которых очень часто наблюдают разрывы кольца и реакции расщепления [13, 14]. Прежде чем перейти к подробному изучению различных типов реакций, следует отметить некоторые общие моменты. В общем случае можно различать два типа реакций — негеминальные и геминальные (рис. 2). [c.8]

    При высокотемпературных реакциях с участием Ре (СО) 5 часто наблюдается изомеризация исходного диеиа. Протекающая при более низких температурах реакция /(г с-пиперилена с Ре2(СО)о приводит, однако, к г ис-изомеру комплекса (схемы 176, 177) [211]. Часто наряду с г г/с-тра с-изомеризацией наблюдается миграция водорода [175, 212] (схемы 178, 179) (см. также разд. 15.6.3.2), [c.290]


Смотреть страницы где упоминается термин Высокотемпературные реакции: [c.17]    [c.23]    [c.280]    [c.60]    [c.167]    [c.308]    [c.5]    [c.196]    [c.34]    [c.166]    [c.62]    [c.231]   
Смотреть главы в:

Новейшие достижения нефтехимии и нефтепереработки том 7-8 -> Высокотемпературные реакции


Новейшие достижения нефтехимии и нефтепереработки том 7-8 (1968) -- [ c.0 ]

Физикохимия неорганических полимерных и композиционных материалов (1990) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

ВЫСОКОТЕМПЕРАТУРНЫЕ ПРОЦЕССЫ И ОБОРУДОВАНИЕ Кинетика гетерогенных химических реакций

Высокотемпературная конверсия константы равновесия реакций

Высокотемпературные реакции азота, связывание

Высокотемпературные реакции в твердой фазе

Высокотемпературные реакции восстановление железных руд

Высокотемпературные реакции границе фаз

Высокотемпературные реакции дуги электрические для их проведения

Высокотемпературные реакции закалочное охлаждение

Высокотемпературные реакции конструкционные материалы для

Высокотемпературные реакции образование ацетилена

Высокотемпературные реакции подвод тепла

Высокотемпературные реакции проведения

Реакции высокотемпературные полиметилбензолов

Роль низкомолекулярных радикалов в реакциях высокотемпературного окисления полимеров

Теплопередача при высокотемпературных реакциях



© 2025 chem21.info Реклама на сайте