Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Растворы повышение точки кипения

    Существует большая группа методов, связанных с осмотическим давлением и предусматривающих определение молекулярной массы в растворе. Так как для разбавленных растворов справедливо правило Рауля—Вант-Гоффа, согласно которому осмотическое давление прямо пропорционально молярной концентрации, то для определения молекулярной массы принципиально пригодны все величины, находящиеся в простой зависимости от осмотического давления. Обычно пользуются такими величинами, которые поддаются простому и легкому измерению понижение точки замерзания растворов, повышение точки кипения растворов и депрессия точки плавления смесей (твердых растворов). В нефтяной практике наиболее широкое распространение получил криоскопический метод, основанный на измерении понижения температуры замерзания растворителя при добавлении к нему исследуемого вещества. [c.127]


    Четвертое коллигативное свойство — осмотическое давление - особенно широко используется для определения молекулярных весов полимерных веществ, поскольку этот метод чувствителен даже при очень низкой моляльности растворов. Повышение точки кипения можно рассматривать как результат неспособности растворенного вещества переходить из жидкой фазы [c.152]

    Рис. 18-12 позволяет проиллюстрировать и второе коллигативное свойство растворов повышение температуры кипения. Допустим, что равно окружающему атмосферному давлению, так что представляет собой температуру кипения чистой жидкости В (точка 1). Если к ней добавить такое количество растворенного вещества А, что мольная доля вещества В уменьшится от 1 до Хд, то давление пара растворителя В уменьшится от Рв до Рв = вРв (точка 2). Это давление меньше атмосферного, поэтому раствор при температуре уже не кипит. Чтобы заставить раствор снова кипеть, необходимо повысить его температуру, переходя вдоль штриховой кривой давления из точки 2 в точку 3, где давление пара снова становится равным атмосферному давлению. [c.140]

    Активность и коэффициент активности можно определить на основании экспериментальных данных (по повышению точек кипения и понижению точек отвердевания растворов, по давлению насыщенного пара над растворами и др.). [c.252]

    Активность и коэффициент активности можно определить экспериментально по повышению точек кипения и понижению точек отвердевания растворов, а также по давлению пара над раствором и другими методами. [c.181]

    Жидкость кипит при температуре, при которой давление ее насыщенного пара становится равным внешнему давлению (в обычных условиях это давление 1,0133 10 Па = 1 атм.) Из закона Рауля следует, что давление пара над идеальным раствором нелетучего вещества меньше, чем над чистым растворителем при той же температуре. Температура кипения идеального раствора будет поэтому выше температуры кипения чистого растворителя Т (рис. 117). Разность = Ту — Т характеризует повышение температуры кипения раствора. Уравнение (123.1) остается справедливым при температуре кипения раствора. В точке кипения давление будет равно постоянному внешнему давлению Рр  [c.355]

    Д/ = / — /о тем больше, чем ниже расположена соответствующая кривая, т. е. чем выше концентрация растворенного вещества. Можно вывести и количественную зависимость между повышением точки кипения и концентрацией раствора, используя условия равновесия — равенство химических потенциалов растворителя в жидкой фазе (в растворе) и в паре (стр. 41). [c.77]


    Если растворенное вещество распадается в растворе на ионы, то число частиц в растворе увеличивается. Поэтому понижение давления пара, повышение точки кипения и понижение температуры замерзания в растворе электролита больше, чем в растворе неэлектролита с той же моляльной концентрацией. По понижению температуры замерзания, повышению точки кипения и понижению давления пара можно судить о степени диссоциации растворенного слабого электролита, если эта величина не слишком мала (не менее 0,1). [c.80]

    Здесь 1=1+а(у—1)—изотонический коэффициент Вант-Гоффа, показывающий, во сколько раз увеличилось число частиц в растворе вследствие диссоциации. В соответствии с этим наблюдаемый эффект (например, понижение температуры замерзания, повышение точки кипения) должен увеличиться в I раз по сравнению с теоретическим, т. е.  [c.80]

    Из рис. VII. 5, а видно, что, в соответствии с первым законом Коновалова, пар и в этом случае обогащен по сравнению с жидкостью тем компонентом, добавление которого к раствору повышает общее давление пара (понижает температуру кипения). Например, добавление СЗг к ацетону повышает общее давление пара и понижает температуру кипения раствора вплоть до содержания СЗг, отвечающего экстремальной точке с. В этой области концентраций пар по сравнению с жидкостью обогащен сероуглеродом. Дальнейшее добавление С5г вызывает понижение общего давления пара (повышение точки кипения), поэтому пар в области концентраций между азеотропной точкой с и чистым сероуглеродом по сравнению с жидкостью обогащен ацетоном. К этому же выводу можно прийти, рассматривая добавление ацетона к сероуглероду. В азеотропной точке с состав жидкости равен составу равновесного с ней пара. [c.94]

    В чистых жидкостях и в растворах, в которых возможно возникновение водородных связей, явление ассоциации молекул играет большую роль. Так, наличие в жидкости межмолекулярных водородных мостиков приводит к понижению давления пара и повышению точки кипения. Известную роль здесь играет и полярность молекул. В частности, при одном и том же молекулярном весе точка кипения жидкости тем выше, чем большее ее дипольный момент. [c.102]

    Согласно исследованиям Рауля, повышение точки кипения растворов, так же как и понижение точки замерзания их, пропорциональны частичной концентрации этих растворов. [c.184]

    Осмотическое давление золей неорганических коллоидов, понижение давления пара раствора, понижение точки замерзания и повышение точки кипения выражаются очень малыми величинами, вследствие обычно весьма малой частичной концентрации этих систем. [c.128]

    А кип — находимое опытным путем повышение точки кипения раствора, состоящего шз т г неэлектролита, растворенного в L г нелетучего растворителя  [c.105]

    Для повышения точки кипения раствора электролита выражение А кип вполне аналогично формуле (3). [c.112]

    Электролиты отличаются от так называемых идеальных растворов рядом специфических свойств. В частности, осмотическое давление, понижение точки замерзания и повышение точки кипения электролитов гораздо больше зависят от концентрации, чем этого следовало ожидать исходя из теории идеальных растворов по законам Рауля — Вант-Гоффа. [c.67]

    В случае растворов электролитов понижение точки замерзания при данной концентрации увеличивается в i раз по сравнению с растворами неэлектролитов. Это аналогично повышению точки кипения. [c.69]

    Жидкость закипает тогда, когда давление пара становится равным внешнему давлению, т. е. при нормальных условиях — 760 мм рт. ст. Как видно из рис. V- , для раствора это наступает при более высокой температуре (Б), чем для чистого растворителя А). Величина такого повышения точки кипения зависит, конечно, от концентрации раствора. [c.166]

    Вычислить молекулярный вес нафталина, если раствор, содержащий в 40 г бензола 1,6 г нафталина, показывает повышение точки кипения на 0,8 °С. [c.110]

    Электролиты отличаются от так называемых идеальных растворов рядом специфических свойств. Осмотическое давление, понижение точки замерзания и повышение точки кипения электролитов гораздо больше зависят от концентрации, чем этого следовало ожидать по законам Рауля — Вант-Гоффа. Эти отклонения получили объяснение только после того, как в 1887 г. Сванте Аррениус высказал гипотезу об электролитической диссоциации. Основные положения теории электролитической диссоциации сводятся к следующему  [c.33]

    ДГ=Д< — величина (в °К или °С) понижения точки отвердевания или повышения точки кипения раствора по сравнению с точкой отвердевания или кипения чистого растворителя  [c.366]

    Вывести выражение, связывающее повышение точки кипения идеального раствора с его составом [уравнение (8.3.1)], и использовать его для определения молекулярной массы нелетучего растворенного вещества (стр. 245). [c.227]

    Если бы в 1000 г спирта была растворена одна грамм-молекула фенола, то точка кипения спирта повысилась бы на 1,16° С. Так как повышение точки кипения (при одном и том же количестве растворителя) пропорционально количеству растворенного вещества, то, обозначив искомый молекулярный вес фенола через М, можем составить пропорцию  [c.130]


    Подобное явление может наблюдаться и у испарителей. Однако в длиннотрубных вертикальных испарителях, обогреваемых конденсирующимся паром и применяемых для концентрирования растворов, температура кипения раствора может в значительной степени меняться по высоте трубок. Эти изменения могут быть вызваны либо повышением точки кипения раствора (например, в сахарном соке более, чем на 10° С) либо воздействием гидростатического давления на точку кипения, которое может быть у вакуумных испарителей очень значительным (например, при рабочем давлении 0,2 ата и длине трубок в вертикальном испарителе, равной 2 м, повышение температуры кипения в нижнем конце трубки по сравнению с температурой кипения вверху трубки для воды составляет 12°С). [c.16]

    Коллигативные свойства растворов. Понижение давления пара, повышение температуры кипения, понижение температуры замерзания и осмотриеское давление. Моляльные константы повышения точки кипения (эбулиоскопическая константа) и понижения точки замерзания (криоскопическая константа). Определение молекулярного веса растворенного вешества. [c.119]

    Общий выход для гексано-гептановой ветви составляет 29 2 %, что ниже бензольной ветви. Авторы [4] показали общую тенденцию увеличения растворения смеси фуллеренов алкановыми растворителями при повышении точки кипения растворителя, при этом выход в раствор высших фуллеренов увеличивался. [c.37]

    Константу Ез называют молярным повышением точки кипения или эбулиоскопической константой. Есл,и продолжить кривую давления пара над раствором до пересечения с кривой равновесия между твердой фазой растворителя и паром (с кривой сублимации), то получится тройная точка раствора. Кривая сублимации для раствора со впада.ет с кривой сублимации для растворителя, так как с полным правом можно принять, что при постепенном охлаждении раствора прежде всего переходит в твердое состояние растворитель. [c.279]

    Для ор1 анической химии весьма интересен метод определения молекулярлого веса вещества в растворенном виде. Обычно измеряют повышение точки кипения (эбулиоскопический метод), понижение точки замерзания растворов (криоскопический метод), депрессию точки плавления смеси (метод Раста). [c.84]

    Пример 2. В 10,6 г раствора содержится 0,401 г салициловой кислоты (С7Н6О3), растворенной в этиловом спирте. Раствор кипит на 0,337° выше, чем чистый спирт. Молекулярное повышение точки кипения этилового спирта равно 1,19. Определить молекулярный вес салициловой кислоты. [c.149]

    В основе физических методов определения среднечисловой молекулярной массы полимера лежит пропорциональность количественных свойств растворов (повышение температуры кипения, понижение температуры замерзания, оомотичеокое давление и др.) числу молекул растворенного вещества. По мере того как концентрация растворенного вещества в разбавленных растворах приближается к нулю, активность растворенного вещества становится пропорциональной его мольной доле. Поэтому в очень разбавленных растворах понижение активности растворителя равно мольной доле растворенного вещества. Измерив понижение активности растворителя при известной массовой концентрации растворенного вещёства, вычисляют его молекулярную массу. Принципиально можно измерить активность растворителя по отношению pIpo, где р — равновесное давление паров растворителя над раствором полимера, а ро — равновесное давление паров над чистым растворителем при той же температуре. Экспериментальное определение р/ро затруднено, поэтому используют кос- [c.164]

    В 10,6 г раствора салициловой кислоты в этиповом спирте содержится 0,401 г салициловой кислоты. Повышение точки кипения раствора равно 0,337 °С. Определить молекулярную массу салициловой кислоты, растворенной в спирте. [c.91]

    Общее число частиц (молекул и ионов вместе) в единице объема раствора электролита больше, чем молекул в таком же объеме эквимолекулярного раствора неэлектролита . Это влияет на количественное выражение тех свойств растворов, которые зависят от частичной концентрации их. Сюда относятся осмотическое давление, понижение давления пара растворов, понижение точки замерзания и повышение точки кипения. Эти свойства для растворов неэлектролитов были рассмотрены в предыдущей главе. Для электролитов же количественное выражение указанных свойств оказывается более высоким, чем для эквимолекулярных растворов неэлектролитов. Был введен поправочный множитель, который обозначается через I и называется изотоническим коэффициентом или коэффициентом Ван т-Г о ф ф а. Для водных растворов электролитов > I, для растворов неэлектролитов I = 1. Для растворов, в которых имеет место ассоциация молекул растворенного вещества (например, раствор С2Н5ОН в бензоле), /< 1. [c.192]

    Поэтому осмотическое давление и связанные с ним понижение точки замерзания и повышение точки кипения очень малы в коллоидных системах. Измерение осмотического давления и других связанных с ним величин в коллоидном растворе позволяет судить о размере коллоидных частиц. Однако надо иметь Б виду, что осмометрия коллоидов связана с большими экспериментальными трудностями во-первых, вследствие того, что все эти величины чрезвычайно малы, и во-вторых, потому, что даже ничтожные примеси — следы электролитов или молекулярнорастворимых веществ — искажают все эффекты. Получить же устойчивый коллоидный раствор без таких примесей обычно бывает очень трудно. [c.21]

    Этот коэффициент выражает отношение истинного осмотического давления, НЛП нонпженш давления пара, повышении точки кипения, или понижения температуры замерзания раствора к тому значению, которое имелось бы в том случае, если бы пе происходило никакого распада на иопы. [c.313]

    С. Аррениус полагал, что растворы электролитов имеют свойства разбавленных растворов повышение температуры кипения (АГк) и понижение температуры замерзания (ДГа) определяются только концентрациями растворенных веществ, т.е. числом частиц в единице объема, а не их природой. Поэтому в растворах электролитов величины АГк и АГз должны увеличиваться в I раз по сравнению с растворами неэлектролитов той же концентрации т . Таким образом, для электролитов АГ = = 1КзГП и АТз= КзГП, т. е. по измерениям АГ и АГэ можно найти I и а. [c.108]

    Теперь мы достаточно хорошо инфор.мированы, чтобы легко объяснить влияние растворенного вещества на точки кипения и замерзания жидкостей, а также некоторые родственные явления. В этом разделе. мы увидим, как рассчитать повышение точки кипения, понижение точки замерзания и осмотическое давление идеальных растворов. Эти свойства зависят от количества растворенного вещества, но не от его природы, и по этой причине они носят название коллигативных (что значит зависящие от числа молекул ). Полезно также рассмотреть слово коллигативный как означа- [c.241]


Смотреть страницы где упоминается термин Растворы повышение точки кипения: [c.417]    [c.162]    [c.76]    [c.184]    [c.192]    [c.79]    [c.85]    [c.111]    [c.367]    [c.245]   
Учебник общей химии 1963 (0) -- [ c.121 ]




ПОИСК





Смотрите так же термины и статьи:

Раствор кипение

Точки кипения



© 2025 chem21.info Реклама на сайте