Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Детектор для капиллярных колонок

    Чтобы применять капиллярные колонки, нужны высокочувствительные малоинерционные детекторы. Этим требованиям наиболее удовлетворяет пламенно-ионизационный детектор. Капиллярные колонки изготовляют в зависимости от цели анализа из меди, латуни, нержавеющей стали, стекла, алюминия, нейлона, тефлона. [c.77]

    Экстракция ж/ж. Г азовая хроматография, ДЭЗ, капиллярная колонка Экстракция ж/ж. Г азовая хроматография, (Л ,/ -детектор), капиллярная колонка [c.537]


    Экстракция ж/ж. Г азовая хроматография, (Л ,/ -детектор), капиллярная колонка Экстракция ж/ж. Г азовая хроматография, ДЭЗ, капиллярная колонка Экстракция ж/ж. Г азовая хроматография, ДЭЗ капиллярная колонка Титриметрия [c.537]

    Условия ГЖХ-анализа следующие хроматограф с пламенноионизационным детектором капиллярная колонка (медная или стальная) эффективностью не менее 30 тыс. теоретических тарелок неподвижная фаза—апиезон Ь газ-носитель — водород, давление газа-носителя на входе в колонку 0,75—1 кгс/см температура термостата 280—300, температура испарителя 350—380 °С. [c.229]

    Условия ГЖХ-анализа следующие хроматограф с пламенно-ионизационным детекторов, капиллярная колонка (медь или сталь) эффективностью не менее 30 тыс. т.т., неподвижная фаза — апиезон Ь. В качестве газа-носителя используют водород. Давление газа-носителя на входе в колонку 0,75—1 атм, температура термостата 280—300° С, температура испарителя 350-380° С. [c.29]

    В книге дается, где это возможно, общепринятая теоретическая трактовка излагаемого материала. Едва ли нужно напоминать читателю о том, что в области газовой хроматографии имеются явления, которые не только не получили еще надлежащей теоретической интерпретации, но и не охарактеризованы еще с достаточной определенностью экспериментально. Это относится, например, к различным факторам, рассматриваемым при разработке теории скорости процесса хроматографирования для насадочных колонок. В гл. V особое внимание уделяется уравнению Ван-Деем-тера — Джонса, дающему наиболее быстрое решение. Теоретическая трактовка рассматриваемых вопросов дается также в главах, посвященных распределению, удерживанию и разделению, детекторам, капиллярным колонкам и неаналитическим применениям газохроматографического метода. [c.9]

    Все образцы анализировали на хроматографе, снабженном пламенно-ионизационным детектором и капиллярной колонкой со скваланом длина колонки 60 м, диаметр 0,25 мм. Проводили также анализы с использованием набивных колонок и детекторов по теплопроводности. Анализ сырья проводили на колонке, заполненной нитратом серебра и бензилцианидом. Продукты анализировали на набивной колонке (длина 3 м, диаметр 6 мм), заполненной 25% гексатриаконтаном на хромосорбе К. После выхода октанов продували колонку через детектор для определения содержания тяжелых углеводородов (Сд и выше). [c.63]

    При газохроматографическом анализе в работах, выполненных в лаборатории автора, использовались медные капиллярные колонки длиною 70—100 м и внутренним диаметром 0,25 мм. Эффективность колонок 50—60 тыс. теоретических тарелок. Детектор ионизационно-пламенный. Газ-носитель—водород. [c.15]


    Хроматограф Цвет-1 с капиллярной колонкой, пламенно-ионизационным детектором и скваланом в качестве стационарной фазы. [c.220]

    На эластомере 5Е-30 (30% на хромосорбе) выполнено разделение каменноугольной смолы [66, с. 267]. Отмечено [83], что при анализе реальных смесей регистрировалось до 29 пиков. В работе [65] на капиллярной колонке (50 мХ Х0,25 мм) при использовании апиезона-Ь и пламенно-ионизационного детектора (хроматограф Хром-2 с изотермическим режимом) удалось зарегистрировать 242 пика и идентифицировать более 80 соединений, включая хризен с т. кип. 440 °С. Зарегистрировано 33 пика веществ с т. кип. до 520 °С. Поправочные коэффициенты для расчета содержания полициклических ароматических углеводородов приведены ниже  [c.138]

    Успеху капиллярной хроматографии способствовало появление пламенно-ионизационного детектора [68]. Эти высокочувствительные детекторы позволили работать с очень малыми пробами веществ, что способствовало повыщению эффективности капиллярных колонок, снижению высоты, эквивалентной теоретической тарелке до 0,15—0,3 мм. [c.118]

    Масс-спектрометрия в газовой хроматографии. Применение масс-спектрометрии для анализа газохроматографических фракций позволяет проводить качественный анализ компонентов разделенной в колонке смеси непрерывно, без выделения выходящ их из колонки веществ. Второе существенное преимущество метода состоит в том, что для масс-спектрометрии вполне достаточны даже те количества вещества, которые получают при анализе на капиллярной колонке. Таким образом, масс-спектрометр может выполнять функцию детектора. Такой метод сочетания хроматографического анализа с масс-спектрометрическим получил название хромато-масс-спектрометрии. [c.195]

    Схема работы с капиллярной колонкой и пламенно-ионизационным детектором хроматографа Цвет-1-64 показана на рис. 36. В этом случае хроматограф действует следующим образом. Газ-носитель азот с панели подготовки газов (ППГ) течет с заданной скоростью в испаритель пробы. Затем он разделяется в тройнике. Часть потока поступает в капиллярную колонку, а другая часть — во сто крат большая доля — направляется через боковой и-образный капилляр в атмосферу. Тройник, капиллярная колонка и и-образный капилляр с подобранным газовым сопротивлением очерчены на рисунке пунктиром. Они составляют систему, называемую делителем потока. [c.80]

    Пробу исследуемой смеси вводят в испаритель чер з резиновую мембрану. Испаритель и делитель потока с капиллярной колонкой помещают в электрический воздушный термостат, питаемый от автотрансформатора (ТР) с терморегулирующим устройством. Вентилятор М создает необходимую циркуляцию воздуха. Внутрь термостата помещен также и блок катарометра, который в работе не участвует, но может быть приведен в действие при переходе от работы с капиллярной колонки к работе с обычной набивной колонкой. По выходе нз капиллярной колонки газ-носитель вместе с продуктами разделения поступает в горелку пламенно-ионизационного детектора через нижний штуцер в сопло. Сюда же подводится поток водорода и воздуха с ППГ, причем скорости потоков водорода и воздуха устанавливаются в строго определенном соотношении. [c.80]

    При пламенно-ионизационном детекторе органические вещества, выходящие из колонки, ионизируются в пламени водорода. Возникающий в электрическом поле детектора ионизационный ток, пропорциональный количеству поступающего в горелку ДИП вещества, усиливается и записывается автоматическим электронным потенциометром. Применение в хроматографе двух типов детекторов, а также использование набивных и капиллярных колонок позво- [c.170]

    На рис. 68 приведена схема хроматографа при использовании набивной или капиллярной колонки, пламенно-ионизационного детектора и катарометра. Работая по данной схеме, можно попеременно подключать выход дозатора то к набивной, то к капиллярной колонке штуцерными соединениями (на рисунке обозначены [c.172]

Рис. 68. Схема хроматографа Цвет-1-64 при использовании попеременно набивной или капиллярной колонки, пламенно-ионизационного детектора или Рис. 68. <a href="/info/499838">Схема хроматографа</a> Цвет-1-64 при использовании попеременно набивной или <a href="/info/39867">капиллярной колонки</a>, <a href="/info/1158625">пламенно-ионизационного</a> детектора или
    Особенно широко применяется этот детектор в работе с капиллярными колонками и колонками малого диаметра, так как позволяет брать очень малые пробы. [c.249]

    Объем ячейки относительно велик — 3—8 мл, поэтому он не пригоден для капиллярной колонки. Пороговая чувствительность такого детектора 4-10 г сек. Напряжение, подаваемое на электроды, можно изменять от 750 до 2000 в. [c.250]

    Работа пламенно-ионизационного детектора зависит от правильного выбора скоростей газов. Потоки водорода со скоростью 500 мл/мин, воздуха 250 мл/мин и газа-носителя 50 мл/мин обеспечивают равномерное горение с образованием пламени между двумя электродами. Пламенно-ионизационный детектор обладает большой чувствительностью и малой инерционностью линейный динамический диапазон его достигает 10 . Особенно широко применяется этот детектор в работе с капиллярными колонками и колонками малого диаметра, так как позволяет брать очень малые пробы. [c.56]


    Отсутствие зернистого носителя дает возможность увеличить длину капиллярной колонки от нескольких десятков до нескольких сотен метров. Столь значительное удлинение колонки резко улучшает разделение анализируемой смеси и позволяет разделять вещества с очень близкими коэффициентами Генри, например орто-, мета- и лара-изомеры, изотопные соединения. Уменьшение диаметра колонки до 0,02 см позволяет работать с очень малыми дозами (порядка 0,1—10 мкг), т. е. капиллярная хроматография является тонким микрометодом анализа. При малых дозах и соответственно малых количествах жидкой фазы на единицу объема капиллярной колонки объемы удерживания и время удерживания компонентов значительно меньше, чем в газо-жидкостной хроматографии в заполненных колонках. Это намного сокращает время анализа, а также позволяет работать при более низких температурах. Объемная скорость потока газа-носителя очень мала, что очень важно при использовании дорогостоящих газов-носителей, таких, например, как гелий и аргон. Отметим, однако, что указанные достоинства в полной мере проявляются лишь при высокочувствительном и неинерционном детекторе. Наилучшим оказался пламенно-ионизационный детектор. [c.117]

    Чтобы применять капиллярные колонки, нужны высокочувствительные малоинерционные детекторы. Этим требованиям наиболее удовлетворяет пламенно-ионизационный детектор. [c.121]

    Ход работы. Начало капиллярной колонки непосредственно подключают к дозатору-испарителю, а конец — к ячейке пламен-но-ионизационного детектора. С помощью тройника-испарителя делят пробу, вводимую в испаритель (см. рис. П. 13), так, что меньшая ее часть попадает в капиллярную колонку, а большая — на сброс в атмосферу. Меняя сопротивление линии сброса с помощью вентиля тонкой регулировки, можно достичь необходимого деления потока. [c.125]

    Альдегиды и олефины идентифицировали аналогично приведенному в литературе описанию [3]. Смесь альдегидов подвергали анализу на хроматографе ХЛ-4 с использованием колонки, заполненной полиэтилепгликольадипинатом на инзенском кирпиче (20%) зернением 0,25—0,5 мм. Длина колонки 6 м, сечение 6 мм. Рабочая температура 125—135° С, скорость газа-носителя (На) 50 мл мин. Олефины определяли на приборе ЛХМ-7А с пламенно-ионизационным детектором. Капиллярная колонка длиной 130 м и сечением [c.41]

    Хроматограф аХром-2 с пламенно-ионизационным детектором. Капиллярная колонка, 45 м капилляра из нержавеющей стали с внутренним диаметром 0,25 мм. [c.42]

    Анализ деароматизированного бензина нроводили на газожидкостном хро.матографе Цвет-4 с линейным программированием температуры, на капиллярной колонке длиной 100 мм, диаметром О,.5 мм, неподвижная фаза — сква-лан, детектор — пламенно-ионизационный. Начальная температура анализа 50°, скорость подъема температуры 1°/мин. [c.203]

    Очевидно также, что чем симметричнее структура исходного углеводорода, тем меньше количество (число) образующихся изомеров. Своеобразный характер метиленирования открывает широкие возможности использования этой реакции для получения углеводородных смесей, содержащих весьма труднодоступные для обычного синтеза структуры. Особого успеха в расшифровке смесей, полученных метиленированием, можно ожидать только при использовании газовой хроматографии и высокоэффективных капиллярных колонок. Дело в том, что для получения смеси, состоящей только из ближайших гомологов, а реакция проводится так, что в каждой молекуле замещается только один водородный атом, глубина метиленирования обычно не превышает 2—3%. Однако использование капиллярных колонок и чувствительного пламенно-ионизационного детектора позволяет легко анализировать подобные смеси. Удачное применение метода метиленирования для анализа смесей изомерных нонанов показано в работе [119]. [c.291]

    В настоящее время широко [гснользуются также капиллярные колонки. Капиллярные трубки изготовлены из металла нли стекла. Внутренний диаметр капиллярных колонок колеблется в пределах 0,25—0,5 мм, длина от 10 до 200 м. В истинных капиллярных колонках неподвижная фаза находится в виде тонкой пленки на внутренних стенках и не заполняет всего объема. Капиллярные колонки имеют эффективность до 1000 теоретических тарелок на метр длины и в комбииацгиг с масс-спектрометрами позволяют анализировать сложные и многокомпонентные смеси. Нижний температурный предел работы всех колонок ограничивается температурой плавления жидкой фазы. Верхний температурный предел работы колонок в основном ограничивается летучестью жидкой фазы и чувствительностью детектора. Вновь приготовленную колонку обычно необходимо выдержать в течение суток в потоке газа-носителя при температуре, которая на 25° выше максимальной рабочей температуры стационарной фазы. [c.299]

    Высокая чувствительность ПИД сделала его одним из самых распространенных детекторов для работы с капиллярными колонками и для определения микропримесей. Однако следует иметь в виду, что ПИД чувствителен только к органическим соединениям и не чувствителен или очень слабо чувствителен к таким газам, как [c.187]

    Катарометр — достаточно простой, надежный в работе и потому наиболее распространенный детектор. Однако из-за недостаточной чувствительности он, как правило, не применяется при работе с капиллярными колонками, а также для определения микропримесей. [c.105]

    Высокая чувствительность ПИД сделала его одним из самых. распространенных детекторов для работы с капиллярными колонками <и для определения микропримесей. [c.107]

    Горелка пламенно-ионизационного детектора представляет собой ионизационную камеру, в которой пламя водорода ионизирует молекулы попадающих в нёго вместе с газом-носителем компонентов разделяемой смеси во время их выхода из капиллярной колонки [c.80]

    Газовый хроматограф Цвет-1-64 представляет собой лабораторный прибор, изготовленный в обыкновенном (не взрывозащищен-ном) исполнении. Предназначен он для анализа смеси органических (с концентрацией от 1 10" до 10%) и неорганических (от ЫО" до 100%) веш,еств, кипящих до 350—400° С и не содержащих агрессивных примесей, способных разрушать стальные детали прибора. Он состоит из трех блоков 1) датчика, состоящего из термостата, катарометра, детектора пламенно-ионизационного (ДИП), испарителя жидкой пробы, газового крана-дозатора 2) блока управления БУ-2, состоящего из панели подготовки газов, усилителя ПВ-2М для ДИП, терморегулятора, блока питания детектора ДИП, блока питания катарометра 3) автоматического самопишущего потенциометра ЭПП-09. Действие прибора основано на использовании методов газо-адсорбционной и газо-жидкостной хроматографии на набивных (аналитических), микронабивных и капиллярных колонках в изотермическом режиме. [c.170]

    I — пламенно-ионизационный детектор 2 — дозатор-испаритель 3 — набивидя колонка 4 — регистраторы ЭПП-09 5 — усилитель 6 — терморегулятор 7 — игольчатые дроссели 8 — блок питания катарометра 9 — катарометр 10 — капиллярная колонка [c.174]

    Капиллярные и микронабивные колонки. В приборе применяются капиллярные (КК) колонки длиной 50 ж с внутренним диаметром 0,25—0,3 мм. Они намотаны на металлический каркас, укреплениый в термостате в специальных прорезях. Концы капиллярной колонки введены непосредственно в испаритель и детектор, что позволяет избежать дополнительного размывания пробы, связанного с наличием мертвого объема до и после колонки (в испарителе и детекторе). Внутренний диаметр микронабивных колонок 1 мм. Присоединены они аналогично капиллярным колонкам. Изготовлены из нержавеющей стали. [c.177]

    Ловелок предложил три типа аргоновых детекторов. На рис. П.24, а приведена схема макроаргонового детектора, предназначенного для хроматографа с аналитической насыпной колонкой. Объем ячейки относительно велик (3—8 мл), поэтому он не пригоден для капиллярной колонки. Пороговая чувствительность такого детектора 4-10 " г/с. Напряжение, подаваемое на электроды, можно изменять от 750 до 2000 В. Этот детектор относится к промежуточному типу. [c.57]

    Дзержинским ОКБА разработаны аналитические газовые хроматографы с цифровым заданием режима работы серии Цвет-500 . Модель Цвет-530 этой серии имеет два детектора катарометр и пламенно-ионизационный. Хроматограф имеет в своем составе криогенное устройство для поддержания в термостате колонок температур от —99° до 399°С. Для определения микропрнмесей в газах хроматограф оснащен обогатительным устройством, где обогащение производится путем низкотемпературной адсорбции или конденсации. В хроматографе используются стальные и стеклянные насадочные колонки, а также стеклянные капиллярные колонки. Двухканальная схема газа-носителя позволяет устанавливать одновременно две насадочные колонки. Температурный ре -ки.м изотермический и линейное программирование температуры. С помощью интегратора осуществляется обработка информации при работе с пламенно ионизационным детектором и катарометром. [c.63]

    Газовые хроматографы серии Цвет-500М производства Дзержинского ОКБА — это хроматографы исследовательского типа. Они применяются для аналитического контроля производственных процессов, а также для разнообразных исследовательских работ. Основными отличительными чертами хроматографов этой серии является цифровое (кодовое) задание режимов анализа, автоматизированная обработка выходной информации с помощью встроенной линии ЭВМ, Алфавитно-цифровое печатающее устройство по окончании анализа выдает отчет, содержащий данные о параметрах хроматографического пика и концентрации анализируемых компонентов. Хроматограф Цвет-500М имеет блочномодульную конструкцию, снабжен пятью детекторами двойным пламенно-ионизационным, пламенно-фотометрическим, катарометром, детектором постоянной скорости рекомбинации, термоионным, а также иони.зационно-пламенным, предназначенным для работы с капиллярными колонками (микро-ДИП), [c.63]


Смотреть страницы где упоминается термин Детектор для капиллярных колонок: [c.626]    [c.135]    [c.176]    [c.550]    [c.298]    [c.263]    [c.172]    [c.125]   
Руководство по газовой хроматографии (1969) -- [ c.338 , c.339 ]

Руководство по газовой хроматографии (1969) -- [ c.338 , c.339 ]




ПОИСК





Смотрите так же термины и статьи:

Капиллярная

Капиллярность



© 2025 chem21.info Реклама на сайте