Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Программирование температуры линейное

    Ранее, при обсуждении теории метода, указывалось, что в газовой хроматографии с программированием температуры линейная скорость газа-носителя в процессе опыта падает вследствие увеличения вязкости газов при увеличении температуры. Поэтому наиболее пригодными для этого метода являются такие типы ионизационных детекторов, показания которых практически не зависят от скорости потока газа-носителя. В случае их применения [c.409]


    Фракционный состав легких нефтяных фракций можно определять также хроматографическим методом [2, 3]. Разделение смесей проводится в колонке низкой эффективности длиной 1—4 м с неполярной жидкой фазой и линейным программированием температуры термостата колонки, т. е. с имитированием дистилляции. В указанных условиях разделения все компоненты смеси выводятся из колонки строго в порядке возрастания их температур кипения. Вследствие этого углеводороды, принадлежащие к разным классам, но имеющие одинаковые температуры кипения, выписываются одним пиком. Метод хроматографического анализа по сравнению с традиционными ректификационными методами имеет ряд преимуществ он позволяет наряду с фракционным составом смеси определять индивидуальный углеводородный состав бензиновых фракций, сокращает время анализа, уменьшает величину пробы, повышает надежность метода и позволяет использовать однотипную аппаратуру. [c.18]

    Основой для проведения химической типизации нефтей, как уже указывалось, является ГЖХ всей нефти, определяемая на капиллярных колонках эффективностью в 25—30 тыс. т.т. в режиме линейного программирования температуры. Экспериментальные подробности изложены в работе [8]. Проведение анализа целиком всей нефти позволяет избежать количественных неточностей, связанных обычно с выделением тех или иных фракций, и дает возможность определить неискаженные значения относительных концентраций важнейших реликтовых углеводородов нормальных (состава (С,2—Сзя) и изопреноидных алканов (состава 0,4—Сзл). Дополнительной характеристикой является определение группового состава основной фракции нефтей (так называемое тело нефти), т. е. фракции, выкипающей в пределах 200—430° С (н.Сц—н.Са )- [c.11]

    Капиллярная колонка 30 м, апиезон линейное программирование температуры 100 — ->. З /мин [c.18]

    Капиллярная колонка 80 м, апиезон линейное программирование температуры 100° -  [c.40]

    Капиллярная колонка 50 м, сквалан линейное программирование температуры 50 - 1°/мин [c.51]

    Цифры показывают число атомов углерода в молекуле (строение углеводородов рассмотрено в тексте). На оси абсцисс указаны места элюирования нормальных алканов Си—Сл Капиллярная колонка 80 м, апиезон линейное программирование температуры 100°-  [c.69]

    Б заключение в табл. 20 приведены индексы удерживания рассмотренных в этой главе углеводородов. Индексы удерживания определены для режима линейного программирования температуры. Использовались капиллярные колонки длиной 80 м, газ-носитель — водород. Температурный режим для колонок со скваланом 50° —> —> 1°/мин (конец программы 150° С) для колонок с апиезоном 100° С — 2°/мин. (конец программы 320° С). [c.71]


    Капиллярная колонка 50 м, апиезон линейное программирование температуры 200" -> 2 /мин [c.89]

    Б а — получены из олеиновой кислоты б — выделены из старогрозненской нефти (А ). Капиллярная колонка 100 м, сквалан линейное программирование температуры 50° - 1°/мин [c.201]

    Капиллярная колонка 30 м, апиезон линейное программирование температуры от 100 до 320° С. Скорость подъема 3 /мин [c.222]

    В работе [10, с. 60—63] предложено определять фракционный состав реактивных топлив с помощью газожидкостной хроматографии на хроматографе Цвет с пламенно-ионизационным детектором, работающим в дифференциальном режиме. Прибор позволяет работать как в изотермическом режиме, так и с программированием температуры термостата колонок в линейном режиме со скоростью от 1 до 40 °С в мин. Хроматографическая колонка из нержавеющей стали длиной 1 м наполнена 5% силиконового эластомера SE-30 на хромосорбе R. Газом-носителем служит азот. Нагревание от 50 до 180°С запрограммировано на скорость 5°С в 1 мин, скорость диаграммной ленты самописца 600 мм/ч. Для испытания требуется 20—30 мг топлива. Содержание отдельных фракций определяют по площадям пиков. Истинные температуры кипения этих фракций устанавливают по калибровочным кривым, представляющим собой зависимость температур удерживания смесей индивидуальных углеводородов Се—С от истинных температур кипения, полученных в различных условиях хроматографирования. [c.17]

    ПХБ или их концентрация существенно (более чем на порядок) ниже. Обычно разделение ХОП на капиллярных колонках проводят в режиме ступенчатого линейного программирования температуры колонки от 40 до 250-300 °С со скоростью нагрева 2-3 С/мин. Шоке излагаются основные принципы, метрологические и технические характеристики методик определения ХОС с помощью капиллярной газовой хроматографии. Более подробно описание этих вопросов дано в работах [34-37]. [c.258]

    Подставив значение (11 из (VI.14) в (VI.13), получим общее уравнение для линейного программирования температуры  [c.184]

    В газовой хроматографии с линейным программированием температуры время удерживания равно повышению температуры, деленному на скорость нагрева. Поэтому удерживаемый объем л,п равен [c.185]

    Нелинейное программирование может осуществляться либо периодическим варьированием скорости изменения температуры, либо непрерывным ее изменением. В первом случае программа включает несколько линейных участков с разной скоростью нагрева. Во втором скорость нагрева непрерывно возрастает и, следовательно, значение rt в уравнении (VI.16) изменяется во времени. В большинстве случаев получающаяся зависимость температуры от времени не поддается детальной количественной обработке, обычно можно получить лишь качественные заключения. При этом следует иметь в виду, что если анализируемая смесь состоит из большего числа легкокипящих компонентов и меньшего — тяжелых, то целесообразно применять нелинейное программирование температуры, т. е. вначале нагрев вести медленно, а затем постепенно его ускорять. [c.185]

    Бюкс С исследуемым веществом помещают в электрическую печь. Его нагревают в соответствии с программированным (обычно линейным) изменением температуры, например со скоростью 50—100 °С в час. Температуру пробы вещества измеряют термоэлементом и одновременно фиксируют изменение массы. При перегреве происходит конвекция газов и, если печь находится под весами, возникающие тепловые потоки вносят искажения в измерения массы. Поэтому бюкс с нагреваемой пробой обычно помещают в стороне или выще коромысла весов (рис. Д.157). [c.394]

    Цвет- -65 . Разработан и изготовляется Дзержинским филиалом ОКБА. Снабжен дифференциальным пламенно-ионизационным детектором. Колонки аналитические малого диаметра и капиллярные. Газовая схема прибора с двумя колонками (дифференциальная схема) и пламенно-ионизационный детектор дифференциального типа позволяют уменьшить изменение (дрейф) фонового тока (особенно при применении программирования температуры). Предусматривает работу в изотермическом режиме и в режиме линейного программирования температуры. Скорость программирования до 40 град мин. [c.254]

    Р А Б О Т А 33. РАЗДЕЛЕНИЕ И АНАЛИЗ СМЕСЕЙ ЖИДКОСТЕЙ НА ХРОМАТОГРАФЕ ЦВЕТ-2-65 В РЕЖИМЕ ЛИНЕЙНОГО ПРОГРАММИРОВАНИЯ ТЕМПЕРАТУРЫ [c.243]

    Лабораторный газовый хроматограф Цвет-2-65 предназначен для анализа сложных органических смесей. Для регистрации результатов анализа в этом хроматографе используется высокочувствительный пламенно-ионизационный детектор, работающий в дифференциальном режиме. Принцип работы хроматографа основан на использовании метода газо-адсорбционной и газо-жидкостной хроматографии. В нем используются набивные аналитические колонки длиной 100—300 см, внутренний диаме.р 0,4 см. Хроматограф может работать как в изотермическом режиме, так и в режиме линейного программирования температуры колонок. Испаритель обеспечивает быстрое и полное испарение жидкой смеси, так как в нем устанавливается температура, равная или выше температуры кипении наиболее высококипящего компонента пробы. Максимальная температура испарителя достигает 450°С при любой температуре термостата. [c.243]


    Закон изменения температуры термостата колонок задается программатором, работающим совместно с терморегулятором. Чаще всего используется линейный закон (постоянная скорость повышения температуры) или линейно-ступенчатый режим, при котором участки повышения температуры чередуются с изотермическими ступенями. Программирование температуры осуществляется электронной системой, изменяющей задание температуры (на- [c.78]

    Скорость нагрева колонок при линейном программировании температуры регулируется в интервале от 1 до 25 С/мин. Неко- [c.105]

    На основании близкой к линейной зависимости температуры удерживания н-алканов от числа углеродных атомов было предложено следующее уравнение для расчета индексов удерживания в условиях линейного программирования температуры [40, 44] [c.170]

    Обобщенные индексы удерживания 01. Сложности расчета и отсутствие единой общепринятой системы индексов удерживания в режиме программирования температуры обусловлены невозможностью характеристики зависимости I ( ) линейной функцией, аналогичной зависимости I = а 1 + Ь, лежащей в основе системы изотермических индексов Ковача. По этой причине для точных расчетов индексов в таких условиях чаще всего используют аппроксимацию нелинейной функции / Ц) полиномами различных степеней. Наибольшее распространение получил способ расчета на основе полиномов третьей степени (так называемый метод кубических парабол). В этом случае для расчета / анализируемого соединения необходимы времена удерживания не двух (как в изотермическом режиме), а четырех реперных н-алканов. [c.171]

    Другой подход к проблеме расчета индексов удерживания в режиме программирования температуры основан на приведении зависимости I от некоторой функции / () к линейному виду, предложен сравнительно недавно 1451 и предусматривает возможность применения формул линейной интерполяции, построенных по типу формулы индексов Ковача. В качестве такой функции f t) целесообразно использовать линейно-логарифмическую функцию вида [c.171]

    Анализ деароматизированного бензина нроводили на газожидкостном хро.матографе Цвет-4 с линейным программированием температуры, на капиллярной колонке длиной 100 мм, диаметром О,.5 мм, неподвижная фаза — сква-лан, детектор — пламенно-ионизационный. Начальная температура анализа 50°, скорость подъема температуры 1°/мин. [c.203]

    Капиллярная колонка 100 м, сквалая линейное программирование температуры 50 -  [c.35]

Рис. 18. Хроматограмма равновесных (300 К) смесей монометилалканов состава i3—Gib Цифры указывают положение метильного заместителя. Капиллярная колонка 80 м, апиезон линейное программирование температуры 100 -> 2°/мин Рис. 18. Хроматограмма равновесных (300 К) смесей монометилалканов состава i3—Gib <a href="/info/470383">Цифры указывают</a> <a href="/info/1559689">положение метильного</a> заместителя. <a href="/info/39331">Капиллярная колонка</a> 80 м, апиезон <a href="/info/24442">линейное программирование</a> температуры 100 -> 2°/мин
    Наилучшим методом определения изопреноидных углеводородов является ГЖХ, проводимая в режиме линейного программирования температуры с применением высокоэффективных капиллярных колонок, или хромато-масс-спектрометрия. Хорошие результаты дает также предварительное концентрирование изопреноидных алканов путем клатратообразования с тиомочевипой. Изопреноидные алканы нефтей весьма различны по своей молекулярной массе и поэтому находятся в различных по температурам выкипания фракциях. Самый низкомолекулярный нефтяной изопреноид — [c.62]

    Указан состав трициклов (в кружках) и тетрациклов (без кружков). Обозначения пиков (J —1I) приведены в тексте на с. 108 (трициклы) в на с, 112 и 126 (тетрациклы). Капиллярная колонка 80 м, апиезон линейное программирование температуры 100° - 2°/мин [c.109]

    Третья диаграмма (рис. Д.163, в) получена методом дифференциального термического анализа (ДТА). На рис. Д.164 показан принцип действия установки ДТА. В системе, которую можно нагревать с линейным программированием температуры, симметрично расположены три сосуда одинаковой вместимости. Один из них заполнен анализируемым веществом, два других — инертным веществом, не подвергающимся термическим превращениям (как правило, -АЬОз). В каждый сосуд введен термоэлемент. Термоэлемент, измеряющий температуру анализируемого вещества, соединен с термоэлементом, измеряющим температуру инертного вещества, таким образом, что термонапряжение гасится, если температуры их равны. При возникновении разности температур между пробой и инертным веществом соответствующую разность напряжений можно заметить по регистрирующему прибору. Одновременно можно зафиксировать температуру системы, которую третий термоэлемент преобразует в напряжение. [c.399]

    Цвет-3-66 . Разработан и выпускается Дзержинским филиалом ОКБА. Имеет два детектора катарометр и пламенно-ионизационный дифференциального типа. Катарометр (четырехплечевой) помещен в отдельный термостат. Позволяет работать как в изотермическом режиме, так и в режиме линейного программирования температуры. Верхний температурный предел термостата колонки 400° С. Колонки аналитические, микронабивные, капиллярные. [c.254]

    Универсальный газовый Цвет-6-69 . Разработан и выпускается Дзержинским филиалом ОКБА. Позволяет проводить качественный и количественный анализ органических и неорганических веществ определять их микропримеси анализировать смеси веществ, кипящих в широком диапазоне температур, в режиме программирования температуры колонки анализировать трудноразделяемые смеси на высокоэффективных колонках, агрессивные и неустойчивые соединения на стеклянных колонках, высокомолекулярные вещества, непереводимые в газовую фазу простым испарением (применяя пиролитическую приставку) выделять небольшие количества отдельных веществ (используя препаративную приставку). Пригоден для физико-химических измерений. Снабжен пятью детекторами дифференциальным пламенно-ионизационным с порогом чувствительности 1 10 % пламенно-ионизационным термоионным с порогом чувствительности Ы0 % электронного захвата с порогом чувствительности 1-10 % четырехплечевым катарометром с порогом чувствительности Ы0 % плотномером с порогом чувствительности 1 -10 %. Тип газовой схемы—двухколоночная с независимой установкой расходов газа-носителя.- Тип программатора температуры колонок — линейный с установкой скорости через 1 град мин. [c.255]

    ЛХМ-7А. Разработан СКВ института органической химии АН СССР имени Зелинского, изготовляется заводом Моснефтекип . Снабжен двумя детекторами пламенно-ионизационным и катарометром, находящимся в отдельном термостате. Предусматривает изотермический режим температуры колонок от 50 до 300° С и линейное программирование температуры от 50 до 300° С. Скорость изменения температуры от 0,5 до 15 град мин. Согласно инструкции, прилагаемой к прибору, запрещается применять водород в качестве газа-носителя. [c.256]

    Дзержинским ОКБА разработаны аналитические газовые хроматографы с цифровым заданием режима работы серии Цвет-500 . Модель Цвет-530 этой серии имеет два детектора катарометр и пламенно-ионизационный. Хроматограф имеет в своем составе криогенное устройство для поддержания в термостате колонок температур от —99° до 399°С. Для определения микропрнмесей в газах хроматограф оснащен обогатительным устройством, где обогащение производится путем низкотемпературной адсорбции или конденсации. В хроматографе используются стальные и стеклянные насадочные колонки, а также стеклянные капиллярные колонки. Двухканальная схема газа-носителя позволяет устанавливать одновременно две насадочные колонки. Температурный ре -ки.м изотермический и линейное программирование температуры. С помощью интегратора осуществляется обработка информации при работе с пламенно ионизационным детектором и катарометром. [c.63]

    Задание. Произвести количественный анализ смеси альдегидов кротонового, масляного, бензальдегида — методом газо-адсорбционной хроматографии на хроматографе ЬДвет-2-65 в режиме линейного программирования температуры. [c.244]

    Действие хроматографа основано на использовании методов газоадсорбционной и газожидкостной хроматографии на капиллярных стеклянных колонках, стеклянных и металлических насадочных колонках, в изотермическом режиме нагрева или в режиме линейного программирования температур. Результаты анализа регистрируются самопишущим потенциометром план- [c.109]

    Линейное программирование температуры возможно во всем диапазоне со скорост11Ю от I до 25 С/мки, с относительным oi клонением скорости не более 5 о. Возвращение к начальной температуре после цикла программирования осуществляется автоматически, Для исключения перегрева термостата при температурах, близких к комнатной, предусмотрено поступление в термостат холодного воздуха путем автоматического приоткрывания двери. [c.118]


Смотреть страницы где упоминается термин Программирование температуры линейное: [c.64]    [c.36]    [c.39]    [c.41]    [c.90]    [c.91]    [c.247]   
Газовая хроматография в биохимии (1964) -- [ c.88 , c.89 ]




ПОИСК





Смотрите так же термины и статьи:

Линейное программирование

Программирование



© 2025 chem21.info Реклама на сайте