Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Марангони

    Слабое эмульгирование может быть получено с любым ПАВ, т. е. с любым соединением, которое понижает поверхностное натяжение между двумя жидкостями. Последнее связано с адсорбцией ПАВ на межфазной поверхности и влияет как на легкость диспергирования при получении эмульсии, так и на скорость разрушения жидкой пленки между каплями. Согласно некоторым взглядам, существенным фактором стабилизации является эластичность пленки. Ниже изложена хорошо известная теория этого явления Марангони и Гиббса .  [c.84]


    Агрегативная устойчивость пен характеризуется скоростью укрупнения частиц дисперсной фазы за счет коалесценции и изотермической перегонки. Стабилизация пен достигается с помощью ПАВ. В зависимости от природы ПАВ и свойств образуемых ими адсорбционных слоев, устойчивость пен обусловливается действием общих для дисперсных систем факторов стабилизации (ионно-электростатический, структурно-механический барьер и др.) и специфическим для пен и эмульсий эффектом Гиббса — Марангони [c.175]

    Однако на величину этого показателя, по-видимому, могут оказывать влияние некоторые физико-химические факторы, которые воздействуют на явления в непосредственной близости к поверхности жидкость—газ, т. е. в пограничном слое. Так, Дэвис и др. и И. А. Гильденблат и дp. обнаружили некоторое возрастание влияния Da на ki в присутствии растворимых в воде поверхностно-активных веществ. С другой стороны, по данным Ю. В. Аксельрода и др. , при нестабильности поверхностного слоя, вызванной, вероятно, градиентом поверхностного натяжения (эффект Марангони), например в случае абсорбции Oj растворами моноэтаноламина, k , может вообще не зависеть от Da- Эти явления требуют дальнейшего изучения, так как они представляют не только теоретический, но и практический интерес для анализа проблем абсорбции с химическим взаимодействием применительно к некоторым промышленно важным процессам (см. главу X). Доп. пер. [c.108]

    Пленка может быть образована, если она обладает упругостью. Так, для растворов ПАВ характерна поверхностная упругость Гиббса и Марангони. Однако она не обеспечивает сохранения равновесной толщины жидкой пленки в случае преобладания гидростатических сил, которые всегда стремятся сделать пленку тоньше. Гиббс указывал [c.79]

    Применение эффекта Марангони — Гиббса к объяснению устойчивости эмульсии не является плодотворным, так как эффект Марангони возникает в неравновесных системах, а эмульсии, как правило, системы долгоживущие и равновесие в них устанавливается в начальные моменты образования. Эластичность же Гиббса наиболее сильно проявляется прн таких концентрациях ПАВ, при которых оно не является стабилизатором эмульсии. Эффектом Марангони — Гиббса может быть объяснена устойчивость толстых пленок, в то время как устойчивость эмульсии обусловлена свойствами тонких пленок. [c.84]

    В динамической системе эффекты Марангони и Гиббса способствуют временной стабилизации жидкой пленки, так как в любой точке, где за счет внешних сил пленка утончается до предела, возникает местное увеличение поверхностного натяжения, противодействующее утончению. Градиент поверхностного натяжения проявляется не только в поверхностном монослое, но и в части близлежащей жидкости вследствие действия сил вязкости. Согласно этому механизму, названному поверхностным переходом, возможна стабилизация любых потенциальных точек разрыва. Наоборот, на утолщенной поверхности происходит падение местного натяжения, что [c.87]


    Другая возможная причина устойчивости таких слоев—эффект Марангони — Гиббса, состоящий в следующем. [c.167]

    Экстремальная зависимость ценообразования от концентрации низкомолекулярных поверхностно-активных веществ может быть объяснена следующим образом. При больших концентрациях поверхностно-активного вещества, т. е. при предельном насыщении поверхностного слоя молекулами поверхностно-актив-ного вещества, градиент концентрации между поверхностным слоем и объемом раствора наименьший. Таким образом, растяжение поверхности пузырька или отток жидкости к углам в эффекте Марангони — Гиббса не приводит к значительному увеличению о, а следовательно, отсутствует сила, препятствующая утончению поверхностного слоя жидкости. Наоборот, при меньших концентрациях, когда поверхностный слой еще не является насыщенным и существует значительный градиент концентрации поверхностно-активного вещества между поверхностью и объемом жидкости, отток жидкости приводит к более резкому возрастанию о на поверхности раздела пузырек — раствор, а следовательно, появляется сила, препятствующая такому оттеканию. [c.169]

    Эффект Марангони также связан с изменением поверхностного натяжения. Быстрая деформация пленки приводит к неравновесному распределению поверхностно-активных веществ вдоль поверхности. В связи с этим возникает поток молекул пенообразователя из области более высоких поверхностных концентраций, или объема пленки, к месту ее локального повреждения. Вместе с молекулами поверхностно-активного вещества устремляются молекулы растворителя. Поток молекул растворителя вызывает восстановление толщины пленки. По мере утончения пленки эффект Марангони усиливается. Однако существует нижний предел толщины пленки, после которого эффект Марангони сказывается незначительно. [c.195]

    Наряду со статическим (равновесным) большую роль играет и динамический фактор устойчивости. При быстром растяжении или сжатии пленки равновесие между поверхностным слоем и объемной фазой успевает устанавливаться не по всей толще пленки, а лишь на некоторую глубину, градиент концентрации ПАВ оказывается более крутым и, согласно теории (см. [5, с. 261]), упругость пленки должна стать большей. Это повышение упругости в динамических условиях, в отличие от равновесного эффекта Гиббса, получило название эффекта Марангони. [c.288]

    Если скорость растяжения пленки настолько велика, что за время ее деформирования не успевает установиться равновесие между адсорбционным слоем и внутренней (объемной) частью пленки, то модуль эффективной упругости оказывается повышенным. Это способствует большему, чем в случае равновесного эффекта Гиббса, увеличению устойчивости пленок и соответственно дисперсной системы. Степень установления равновесия между адсорбционным слоем и внутренней частью пленки, а следовательно, и величина модуля эффективной упругости определяются скоростью диффузии ПАВ из объема пленки к ее поверхности и зависят от типа ПАВ. При быстром и особенно локальном деформировании пленки нарушается и равновесное распределение вещества по поверхности пленки, что также приводит к повышению модуля эффективной упругости. В данном случае существенная роль принадлежит поверхностной миграции молекул ПАВ из области с высокой адсорбцией (недеформированная часть пленки) в область с пониженным значением Г (деформированная часть). Этот фактор устойчивости, проявляющийся в отсутствие равновесия на поверхности и равновесия между адсорбционным слоем и внутренней частью пленки, называют эффектом Марангони — Гиббса. [c.254]

    Анализу рассматриваемого эффекта возникновения нестабильности жидкости под воздействием градиента поверхностного натяжения применительно к абсорбции СО, аминами посвящена также работа П. Л. Т. Бриана б, а применительно к другим случаям — еще несколько работ, появившихся в последнее время и названных в списке дополнительной литературы. Общее теоретическое расс.мотрение неустойчивости жидкости и возникновения турбулентности вблизи межфазной границы под воздействием локальных изменений поверхностного натяжения (эффекта Марангони) при протекании процессов тепло- или массопередачи было впервые предпринято К. В. Стерлингом и Л. И. Скривеном 7. [c.250]

    В г i а п Р. L. Т., Ат. Inst. hem. Eng. J., 17, 765 (1971). Влияние гиббсовой адсорбции на неустойчивость (жидкости у свободной поверхности) под воздействием эффекта Марангони. [c.279]

    Эффект Гпббса — Марангони заключается в следующем. Тонкие пленки, содержащие ПАВ, способны реагировать на локальные изме- [c.175]

    В г i а п Р. L. Т., S m i t h К. А., Ат. Inst. hem. Eng. J., 18, 231 (1972). Влияние гиббсовой адсорбции на нестабильность (жидкости у свободной поверхности), обусловленную эффектом Марангони. [c.279]

    Как показали Стерплинг и Скривеп (1959), при изменении поверхностного натяжения возрастает вероятность возникновения поверхностной турбулентности. В этом, собственно говоря, заключается эффект Марангони, интерес к которому вновь возрос в последнее время (Скривеп и Стернлинг, 1960, 1964 Смит, 1966). [c.64]

    Ru kensteinE., Berbente С., hem. Eng. S i., 25, 475 (1970). Влияние вращающихся ячеек у поверхности жидкости на массоотдачу в жидкой фазе (при наличии турбулентных пульсаций вблизи границы с газом, обусловленных как турбулентностью потока, так и поверхностным эффектом Марангони). [c.288]


    Ru kensteinE., Сап. J. hem. Eng., 49, 62 (1971). Массоперенос (при абсорбции) в горизонтальный слой неподвижной жидкости при наличии нестабильности поверхности (под действием эффекта Марангони). [c.288]

    Значительно меньшее число работ посвящено исследованию коалесценции капля—капля. Утончение пленки сплопшой фазы, разделяющей капли, во многом аналогично утончению пленки менаду каплей и плоской поверхностью. Процесс утончения пленки между каплями продолжается до тех пор, пока не возникнут достаточно сильные нарушения, вызываемые эффектом Марангони, механической и звуковой вибрацией, электрическими и температурными нолями, приводящие к разрыву пленки. Детальный обзор по меж-капельной коалесценции в жидкой и газовой средах приведен в [37]. [c.291]

    Наоборот, если поверхность уменьшается, то локальное натяженпе понижается по сравнению с равновесным, так как требуется определенное время для десорбцпи и диффузии ПАВ. Это различие между динамическим и статическим натяжениями известно как эффект Марангони. Была предпринята попытка количественного обоснования этого эффекта на основе уравнения Шишковского (1908). Эта проблема трудна из-за сложностей конвективного переноса, потенциальных энергетических барьеров адсорбции и стерических ограничений к проникновению молекул в адсорбционный слой, уже частично занятый молекулами ПАВ. Качественно ясно, что этот эффект является наибольшим в системах с очень разбавленными растворами высоко поверхпосгно-активных соединений, включающих высоко-мо.текулярные поверхностно-активные вещества. [c.86]

    Как и эффект Марангони, эластичность Гиббса возрастет с ростом поверхностной активности вещества, т. е. с увеличением da/d 1п а. Измерить эластичность жидкой пленки (например, пленки мыла) посредством ее статического растягивания на рамке не представляется возможным. Причина состоит в том, что пленка растягивается лишь по периметру ( кольцо Гиббса или плоская рамка ) и натяжение изменяется чуть заметно. Однако Майзельс и Кокс (1961, 1962) разработали уникальный метод измерения изменения толщины пленки с натяжением и получили значение - 10 дин1см для подвижных пленок дегергентов и 100 дин см для жестких смешанных пленок. По-видимому, сравнимые результаты можно ожидать в случае пленки М/В. [c.87]

    Трудно в настоящее время определить относительный вклад эффектов Гиббса и Марангони в реальных системах. Пленочный эффект Гиббса можно вычислить, но проблематичным остается наличие градиента поверхностного натяжения. Эластичность Гиббса практически должна быть равна нулю для концентрированных растворов ПАВ, так как а/с с О при концентрации ПАВ выше ККМ. Однако такие растворы являются сильно эластичными. Исследования ио затуханию волн позволят, вероятно, разъяснить эту проблему. Когда волна проходит вдоль жидкой поверхности раздела, наблюдается некоторое затухание амплитуда колебаний уменьшается из-за разности значений вязкйсти по объему жидкости. Затухание значительно усиливается, если жидкость является раствором ПАВ или имеется нерастворимый ыопослой. В этом случае волны расширяют и сжимают поверхность, вызывая противосилы, которые отсутствуют в чистых жидкостях. [c.88]

    Видимо, эффект Марангони характеризует первоначальное состояние пены, когда пленки еще толстые, по устойчивость определяется другими эффектами. Шелудко (1962) показал, что стойкие пены образуются в системах, которые дают черные пленки. Как было упомянуто ранее, следует принять во внимание поверхностные силы второго рода, чтобы объяснить метастабильную пленку, и поэтому к.шсспческая химическая термодинамика поверхности не является адекватной. Дерягин, Мартынов и Гутоп (1965) разработали термодинамику свободных от жидкости пленок (например, для пленок тоньше, чем толщина двух адсорбционных слоев Гиббса). [c.89]

    Роль межфазной вязкости. Со времени Плато (1873) некоторые авторы предполагают, что высокая поверхностная вязкость может способствовать стабильности жидких пленок (обзор этих работ дан Китченером, 1964). Если вязкость и не является причиной статической метастабильностн, то опа может способствовать динамической стабилизации, которую обеспечивает объемная вязкость в результате замедления экструзии н пдкости между двумя поверхностями. Имеется много данных о вязких адсорбционных слоях на межфазной поверхности воздух — вода, и они часто связываются с высокой поверхностной эластичностью Марангони — Гиббса. [c.90]

    Во-вторых, в любой эмульсии, приготовленной с ПАВ, адсорбционный слой делает поверхность жесткой капли, как правило, таких размеров, что любое тангенциальное давление сдвига, которому они могут быть подвержены, непосредственно противодействует градиенту поверхностного натяжения, возникающему при бесконечно малом изменении ст. Хорошо известно, что капли с диаметром >1 мм имеют нешарообразную форму при перемещении в низкоконцентрированных водных растворах ПАВ, так как они подчиняются закону Стокса, а не Гадамарда (1911). Разные участки капель могут одновременно иметь несколько различное натяжение. Установлено, что в данном случае происходит запаздывание процесса адсорбции — десорбции, т. е. наблюдается эффект Марангони. Поэтому, когда соприкасаются две такие капли эмульсии, опи коалесцируют медленно .  [c.91]

    Отметим еще два фактора, обеспечивающих устойчивость пленок эффект Гиббса и эффект Марангони. Иногда эти эффекты рассматриваются совместно. Эффект Гиббса связан с изменением адсорбционного равновесия при растяжении пленки. Увеличение площади пленки приводит к уменьшению концентрации поверхностно-активного вещества в поверхностном слое, что, в свою очередь, увеличивает поверхностное натяжение, стремящееся сократить поверхность. Таким образом, при растяжении пленка проявляет упругие свойства. Для количественной характеристики эф кта Гиббса используется эластичность (упругость) Е, представляющая собой отношение изменения силы, стремящейся сократить площадь пленки с обеих сторон (25с1а), к изменению площади dS  [c.194]

    В случае легкоподвижной границы раздела дисперсной фааы и дисперсионной среды (пены и эмульсии) условие равенства нулю скорости течения жидкости на поверхности раздела, определяющее применимость уравнения Рейнольдса, кожет на выполняться, и утоньшение пленки будет происходить с большей скоростью. Однако в пенных и эмульсионных пленках, стабилизированных адсорбционными слоями ПАВ, условия вытекания жидкости приближаются к условиям вытекания из зазора между твердыми поверхностями даже и тогда, когда молекулы ПАВ не образуют сплошной твердообразной пленки. Это связано с тем, что при значениях адсорбции ПАВ меньших предельной Гта движение поверхности жидкости приводит к переносу части молекул ПАВ адсорбционного слоя из центральных участков пленки на периферийные участки, пр1илегающие к каналам Гиббса — Плато. В результате значение адсорбции в центре пленки уменьшается, а на периферии увеличивается, что обусловливает возникновение градпента поверхностного натяжения (градиента двухмерного давления) вдоль поверхности пленки, т. е. проявляется упомянутый выше эффект Марангони — Гиббса. Этот градиент поверхностного натяжения может в значительной степени уравновешивать стремление гра.ничных слоев жидкой пленки к вытвйанию п-ри этом поверхность приобретает как бы твердообразные свойства и устанавливается режим течения, описываемый уравнением Рейнольдса (IX—24). [c.256]

    Детальные исследования в этом направлении были проведены школами Шелудко в Болгарии и Майзелса в США. Они показали (рнс. X—6), что вытекание жидкости из пленок в основном подчиняется рассмотренному в предыдущей главе уравнению Рейнольдса (IX—24). Это означает, что наличие адсорбционных слоев ПАВ иа поверхности пленки обеспечивает отверждение поверхностей вследствие эффекта Марангони — Гиббса. Вместе с тем могут встречаться и отклонения от рейнольдовского режима утоньшения пленок. В некоторых случаях, как было показано в работах И. Б. Иванова с сотр. в Болгарии, эти отклонения связаны с поверхностной и объемной диф- [c.279]

    Проведенный анализ устойчивости такой системы позволил получить дисперсио-ное уравнение, связывающее скорость нарастания (затухания) бесконечно малых возмущений с основными физико-химическими параметрами задачи. Из условия равенства нулю скорости нарастания возмущений выведено уравнение нейтральной устойчивости, связывающее основной безразмерный параметр, определяющий условие потери устойчивости системой в процессе ее эволюции (число Марангони), с волновым числом возмуи(ения. С помощью этой зависимости найдены минимальное значение числа Марангони и соответствующее ему значение волнового числа, при которых возможно возникновение неустойчивости Проанализированы условия потери системой устойчивости в зависимости от величины константы скорости химической реакции, вязкости жидкости, коэффициента диффузии и т.д. [c.30]


Смотреть страницы где упоминается термин Марангони: [c.288]    [c.289]    [c.145]    [c.350]    [c.88]    [c.295]    [c.307]    [c.339]   
Курс коллоидной химии 1974 (1974) -- [ c.295 ]

Курс коллоидной химии 1984 (1984) -- [ c.288 ]

Курс коллоидной химии 1995 (1995) -- [ c.317 ]

Последние достижения в области жидкостной экстракции (1974) -- [ c.207 , c.213 , c.248 , c.252 , c.253 ]

Газожидкостные хемосорбционные процессы Кинетика и моделирование (1989) -- [ c.97 , c.100 , c.115 ]

Массопередача при ректификации и абсорбции многокомпонентных смесей (1975) -- [ c.106 ]

Курс коллоидной химии (1984) -- [ c.288 ]

Курс коллоидной химии Поверхностные явления и дисперсные системы (1989) -- [ c.94 ]

Химия и технология газонаполненных высокополимеров (1980) -- [ c.16 , c.30 , c.54 , c.87 ]




ПОИСК





Смотрите так же термины и статьи:

Бенара—Марангони

Бенара—Марангони конвекция

Бенара—Марангони конвекция конвекция термокапиллярная

И ЭФФЕКТ МАРАНГОНИ— ГИББСА Духин МИКРОСКОПИЧЕСКАЯ ТЕОРИЯ ДИСПЕРСИОННЫХ

Каплеобразование эффекта Марангони

Марангони неустойчивость

Марангони ориентационный

Марангони отбеливания

Марангони полисопряжения

Марангони сохранения формы

Марангони эффект

Марангони эффект мицеллярные

Марангони эффект обращение

Марангони эффект отношение объемов фаз

Марангони эффект подвижность капелек

Марангони эффект разрушение

Марангони эффект расслоение

Марангони эффект реопексия

Марангони эффект роль дальнодействующих сил

Марангони эффект скорость коагуляции

Марангони эффект стабилизация

Марангони эффект старение

Марангони эффект структурными факторами

Марангони эффект твердыми частицами

Марангони эффект теория

Марангони эффект тиксотропия

Марангони эффект флоккуляция

Марангони—Гиббс, фактор устойчивости

Марангони—Гиббс, фактор устойчивости эффект

Марангони—Гиббса

Межфазная эффекта Марангони

Модуль упругости Гиббса Марангони

Растекание жидкости. Эффект Марангони

Стабильность эффект Марангони Гиббса

Течения, вызванные градиентом поверхностного натяжения. Эффект Марангони



© 2024 chem21.info Реклама на сайте