Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кобальт как катализатор при при удалении сероводород

    Соединения натрия могут попадать в топливо вследствие недостаточной промывки его водой после щелочной очистки, применяемой в отдельных случаях для снижения кислотности топлива или удаления из него сероводорода. Присутствие соединений ванадия возможно в топливах, полученных прямой перегонкой нефти соединения молибдена, а также кобальта, никеля и цинка могут попасть в реактивные топлива, прошедшие обработку в присутствии катализаторов, содержащих эти элементы. В комплексе методов квалификационной оценки реактивных топлив предусмотрено спектральное определение перечисленных элементов и установлено предельно допустимое их содержание (не более 10 %). [c.57]


    Гидроочистку проводят с целью облагораживания бензинов, дизельных топлив, масел и других нефтепродуктов путем разрушения содержащихся в них сернистых соединений и удаления серы в виде сероводорода. Наиболее типичные катализаторы - алюмо-кобальт- и алюмо-никель-молибдено-вые. Наряду с обессериванием происходит насыщение непредельных углеводородов, а при более глубокой форме процесса - гидрирование ароматических углеводородов до нафтеновых. [c.37]

    Каталитическое гидрирование меркаптанов в присутствии таких катализаторов, как молибдат кобальта, сульфид никеля, сульфид молибдена и аналогичные, ведет к образованию соответствующего углеводорода и сероводорода. В цитировавшейся выше монографии [65 стр. 112—115] приведены сотни ссылок на литературу, посвященную методам удаления тиолов и других сернистых соединений из нефтей и нефтепродуктов. [c.270]

    Гидроочистка заключается в использовании водорода для связывания и удаления примесей при 350-400°С и 3-5 МПа с применением алюмо-кобальто-молибденового катализатора. При взаимодействии водорода с сернистыми, азотистыми и кислородсодержащими соединениями образуются легко удаляемые сероводород, аммиак и вода. Технология требует значительных капитальных и текущих затрат. [c.248]

    Сероочистка исходного углеводородного сырья в установке гидроочнстки зависит от гидрогенолиза сераорганических соединений в сероводород на кобальт-молибденовом катализаторе. Удаление серы из сырья в сероочистке типа сэндвич зависит от комбинации этой реакции с разложением и абсорбцией сераоргани-ческнх соединений и сероводорода окисью цинка. Чтобы проектировать и работать на таких системах, необходимы сведения об относительных скоростях реакций различных типов соединений серы, так как они определяют условия достижения заданной степени сероочистки. В некоторых случаях термическое разложение определенных типов соединений серы может приводить к образованию сероводорода. [c.72]

    Деасфальтизат подвергали гидрокрекингу на пилотной установке при давлении 150 ат, температуре 400 —420° С, объемной скорости подачи сырья 0,5 ч , циркуляции водородсодержащего газа 1000 л л на промышленном алюмо-кобальт-молибденовом катализаторе. Гидро-генизаты после удаления сероводорода направляли на пилотную установку АВТ, где выделяли целевую керосиновую фракцию со следующими свойствами плотность 0,830 г/сж пределы перегонки 180— 280° С содержание серы —0,312%, азота 0,027%, алканов 24,4%, моноциклических нафтеновых 22,08%, бициклических нафтеновых 13,72%, алкилгомологов бензола 10,21, нафталина 6,3, тетралина и индана 10,58, аценафтена "5,04, аценафтилена 4,57, бензтиофена 3,10%. [c.208]


    Оболенцев и Кузыев [61] проводили гидрогенолиз фракции 200—225° С в присутствии промышленного алюмо-кобальт-молиб-денового катализатора гидроочистки. После удаления сероводорода хлористым кадмием углеводороды, выкипающие до 200° С (т. е. образовавшиеся при гидрогенолизе), анализировали на колонках с силиконом ПМФС-4 и авиационным маслом МС-20. Идентификацию осуществляли на основании зависимости между характеристиками удерживания и температурой кипения. [c.188]

    В последнее время для более полного удаления из топлива сернистых соединений применяют каталитическую гидроочистку. Этот процесс проводится в среде водорода под давлениСхМ 10—70 ат и температуре 390—420° С в присутствии алюмо-кобальт-молибдено-вого катализатора. В этих условиях происходит гидрирование сернистых соединений с образованием сероводорода, а также кислород-и азотсодержащих соединений. Гидроочистка является наиболее перспективным методом глубокой очистки авиационных топлив. [c.10]

    Наибольшие количества сероводорода и органических сернистых соединений могут быть удалены из газов при температурах до 450 °С с помощью промышленных катализаторов, таких, как оксид цинка, промотированный оксид железа, алюмохромовый, кобальт-молибденовый катализаторы или активированный уголь. Однакс стоимость этих катализаторов высока и в настоящее время применение их для удаления больших количеств сернистых соединений из природного и нефтяных газов, где их, концентрации относительнее высоки, представляется акономически неоправданным. [c.166]

    Удаление этих веществ осуществляется на гидрирующих алюмо-кобальт- или алюмо-никель-молибденовых катализаторах. Продукты гидрирования этих веществ (сероводород и аммиак) удаляются из гидрогенизата в сепараторе ВСГ. Соединения металлов отлагаются на катализаторе гидроочистки и постепенноснижаютегоактивность. Удаление воды в отпарной колонне позволяет подготовить гидрогенизат для блока каталитического риформинга по содержанию влаги. [c.129]

    Первая промышленная установка была построена фирмой Лурги в Нюрнберге (ФРГ) здесь гидрирование сырого бензола, получаемого перегонкой каменноугольного дегтя, осуществляют коксовым газом под давлением около 37 ат. Несколько иные условия гидроочистки используются на установках фирмы Шольвен (производительность 720 м /сутки) и Гарпенер Бергбау (производительность 201 м сутки) [52]. На этих установках очистку сырого бензола проводят водородом вместо коксового газа при 350° С и давлении 52—63 ат. Хотя применяемый катализатор точно не указан, очевидно, используется окисный металлический катализатор типа кобальт-молибденового на окиси алюминия, аналогичный применяемому при гидроочистке бензинов. В некоторых случаях сырой бензол коксования нагревают при 37 ат до 200° С в присутствии коксового газа. Пос.ле этой обработки, ведущей к удалению полимерных продуктов, сырой бензол нагревают до 350° С и пропускают через слой катализатора для превращения серы и азота соответственно в сероводород и аммиак, удаляемые последующей промывкой продукта. Затем бензол, толуол и ксилол отделяют от алканов четкой ректификацией. [c.156]

    Промышленный катализатор, например тиомолибдат кобальта, приготовляют растворением трехокиси молибдена в 25%-ном водном аммиаке, к которому предварительно добавлен сульфат меди. Светло-голубой осадок молибдата меди снова растворяют добавкой небольшого количества аммиака. Полученный раствор используют для пропитки носителя, обычно зерен боксита диаметром 3,2—6,4 мм. После пропитки боксит нагревают приблизительно до 400° С для удаления избытка аммиака и разложения сульфата аммония. Затем катализатор превращают в тиомолибдат кобальта обработкой газом, содержащим сероводород, при температуре 300— 400° С [16]. [c.322]

    К гидрокрекингу близко примыкает гидроочистка чтобы лучще понять роль обоих процессов при переработке сырья, имеет смысл сравнить их между собой. Гидроочистка нефтяных дистиллятов — это процесс удаления серу- и азотсодержащих соедйнений путем селективного гидрирования. В промышленных процессах гидроочистки используют кобальт-молибденовые или никель-молибденовые сульфидные катализаторы, нанесенные на окись алюминия. Проводится гидроочистка в таких условиях, которые позволят избежать значительного гидрирования ароматических соединений, например при давлении водорода около 70—140 атм и температуре, близкой к 350° С Теоретически расход водорода должен обеспечивать только гидрогенизацию серу-, и азотсодержащих соединений до аммиака и сероводорода. Однако в реальных условиях реакции обессеривания неизбежно сопровождаются некоторым развитием процессов гидрогенизации и гидрокрекинга, глубина которых зависит от характера сырья и количества удаленной серы. Так, например, согласно расчетным данным, расход водорода на 90%-ное обессеривание 1 л кувейтского атмосферного газойля должен был составлять около 17 л, тогда как фактический расход примерно равен 22 л. Таким образом, на реакции гидрогенизации и гидрокрекинга было израсходовано примерно 5 л водорода. Для 75%-ного обессеривания 1 л кувейтского атмосферного остатка, содержащего 4,0% серы, теоретическй требуется 50 л водорода, а фактический расход превышает 100 л, т. е. свыше 50 л водорода расходуется на реакции, не связанные с обессерива-нием [1]. Повышение рабочей температуры с 350 до 400° С, переход на вакуумный газойль с применением алюмоникельмолибденового катализатора, обычно используемого для гидроочистки, еще больше усиливают реакции гидрокрекинга, в результате образуются главным образом компоненты средних дистиллятов. Однако в подобных условиях скорость дезактивации катализаторов превышает допустимую для тех промышленных процессов, которые проводятся при сравнительно невысоких давлениях, принятых в гидроочистке. [c.338]



Смотреть страницы где упоминается термин Кобальт как катализатор при при удалении сероводород: [c.460]    [c.220]    [c.468]   
Химия углеводородов нефти и их производных том 1,2 (0) -- [ c.460 ]




ПОИСК





Смотрите так же термины и статьи:

Катализаторы кобальта



© 2025 chem21.info Реклама на сайте