Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Определение молибдата меди

    Сконцентрированный на поверхности твердого электрода металл подвергают анодному растворению, снижая напряжение и регистрируя возникающий анодный ток. Сила анодного тока при определенных условиях пропорциональна концентрации ионов металла в растворе. На таком принципе основаны, например, методики определения серебра в металлическом кадмии, ртути и серебра — в оксалатах аммония или калия, кадмия, свинца и меди — в цинке, кобальта — в молибдате аммония и др. [c.499]


    Определение молибдата меди [c.169]

    Определению не мешают ионы ацетата, алюминия, аммония, бромида, кальция, хлорида, трехвалентного хрома, кобальта, двухвалентной меди, бихромата, фторида, трехвалентного железа, двухвалентного свинца, двухвалентного марганца, молибдата, никеля, оксалата, перхлората, перманганата, калия, серебра, натрия, сульфата, ванадата и цинка. Мешают ионы силиката, арсената, арсенита, германата и нитрита их следует удалять перед первой экстракцией. Допустимо присутствие не более 200 мкг мл нитрата и 20 мкг мл вольфрамата. [c.22]

    В. для открытия и определения Си, Мо, W. Соли меди дают зеленый осадок, нерастворимый в разбавленном аммиаке, спирте и тартратных (виннокислых) р-рах, но растворимый в минеральных к-тах и конц. аммиаке. Молибдат- и вольфрамат-иопы осаждаются из сильнокислых р-ров. Реактив взаимодействует с ионами мета.лпов в антом-(а)-форме (см. Диметилглиоксим). [c.205]

    Определению мешают бихромат, молибдат, перйодат, перманганат, тиосульфат, вольфрамат, ванадат, трехвалентные золото и железо, хлороплатинат, хлорат и сульфит. Анализируемый раствор также должен быть относительно свободен от органического вещества, которое может поглощать в ультрафиолетовой области. Ионы йодида, двухвалентной меди, уранила, цианида и двухвалентного железа допустимы в концентрации до 20 мг л. Максимально допусти- [c.133]

    Коэффициент вариации при определении хрома 0,05 мкг мЛ равен 7%. Этим методом хром можно определять на фоне солей щелочных металлов в присутствии больших количеств ряда элементов. Прямо пропорциональная зависимость между максимумом производной анодного тока по времени и концентраций ионов в растворах наблюдается, например, в присутствии больших количеств сульфата цинка, вольфрамата (молибдата) аммония. Не мешают определению соизмеримые количества меди, сурьмы, висмута, щелочноземельные элементы в количествах, не осаждающих ионов СгО ". Ионы металлов, гидролизующиеся в используемых буферных растворах, не мешают, если осадок не захватывает хромат-ионы, например АР+ может присутствовать в больших количествах. [c.94]

    Нормальный окислительно-восстановительный потенциал системы Ре +/Ге + сильно снижается в присутствии комплексона. По данным Шварценбаха и Геллера [22], он равен +0,117 в при pH 4—6,5. Поэтому раствор сульфата двухвалентного железа в присутствии комплексона обладает сильно восстановительными свойствами. Он, например, восстанавливает ионы серебра до металлического серебра, восстанавливает ионы четырехвалентного селена, молибдата (VI) и т. п. Возможность применения сульфата железа (II) в присутствии комплексона для редуктометрических определений подробно изучали Белчер, Гиббонс и Уэст [23]. В присутствии комплексона они титровали сульфатом железа (II) ванадаты (V), бихроматы и свободный йод, а также броматы и йодаты. Однако они не нашли никаких преимуществ системы сульфат железа — комплексон по сравнению с другими применяющимися для определения этих веществ восстановителями. В одной из более старых работ автора этой книги сульфат двухвалентного железа был применен для определения серебра в присутствии других катионов, как, например, железа, меди и т.д. [24]. Прямым редуктометрическим титрованием можно определить серебро в присутствии свинца, даже если они находятся в отношении Ag Pb= = 1 300. Определение серебра вполне надежно, если оно находится в растворе в концентрации, превышающей 0,001 М. [c.178]


    При добавлении к подкисленному раствору фосфата раствора молибдата аммония образуется окрашенное в желтый цвет соединение, поглощение которого измеряют при 380—420 нм. Этот метод был использован для определения фосфата [111]. Определению мешают мышьяк, кремний, вольфрам, ванадат, висмут и значительные концентрации никеля, меди и фторида. [c.458]

    Преимущество применения хлористого олова состоит еще и в том, что присутствие в анализируемом раствЬре до 10 мг нитрат-иона, 12,5 мг молибдата аммония, 40 мг сульфата меди, 20 мг ванадата натрия и до 20 мг хлорида титана (IV) на результат определения урана не оказывает влияния. [c.87]

    После спекания тигель охлаждают на воздухе. Охлажденный спек не рекомендуется оставлять длительное время на воздухе, так как это ухудшает разделение молибдена и рения при анализе молибденитов за счет перехода окиси кальция в карбонат [376]. Остывший спек вьщелачивают водой при нагревании раствора до кипения в течение 20—60 мин. В полученном растворе (щелоке) содержатся перренат- и в небольших количествах (1—12 мкг/мл) молибдат-, вольфрамат-, ванадат-, сульфат- и другие ионы в осадке — нерастворимые соли молибдена(У1), вольфрама(У1), кремния и др., гидроокиси железа(1П), алюминия, титана(1У), меди(П), марганца(1У) и других элементов. Щелок фильтруют через бумажный фильтр, осадок па фильтре промывают горячей водой. Фильтрат при стоянии мутпеет вследствие образования осадка карбоната, который, однако, не мешает определению рения. Для предотвращения образования этого осадка рекомендуется собирать фильтрат в сосуд, содержащий небольшое количество соляной кислоты ( 1 мл). Для уменьшения содержания в фильтрате молибдат-, вольфрамат- и сульфат-ионов при выщелачивании плава в раствор добавляют соединения бария, образующего с названными ионами малорастворимые в воде соединения [133, 384, 576]. Иногда для удаления из фильтрата кальция к нему прибавляют карбонат аммония [501]. В результате всех этих процедур рений эффективно отделяется также от Са, d, Bi, Sb, Hg, Se, Te и As. [c.236]

    Тиоцетамид используют при определении меди и свиица в молибдате аммония [4].  [c.288]

    Определение кобальта в виде комплекса с пиридин-2,6-дикарбоновой кислотой С5Нз (СООН)2 [813]. Ионы двухвалентного кобальта легко окисляются броматом калия в азотнокислой или сернокислой среде в присутствии пиридиндикарбоновой кислоты, образуя окрашенный в красный цвет анионный комплекс трехвалентного кобальта, в котором на один ион кобальта приходится две молекулы реагента. Комплекс имеет максимум поглощения при 514 ммк и молярный коэффициент погашения при этой длине волны, равный 672. Можно определять 2—100 мг мл Со. Комплекс устойчив по отношению к ионам двухвалентного олова и тиогликолевой кислоте это позволяет определять кобальт в присутствии трехвалентного марганца, который также образует окрашенный комплекс, но легко восстанавливается при действии указанных восстановителей. Не мешают катионы меди, железа и никеля, а также щелочноземельных металлов, алюминия, кадмия, ртути, галлия, индия, свинца, сурьмы, мышьяка, висмута, титана, циркония, цинка, ванадия, церия, тория, хрома, серебра, анионы перманганата, молибдата, вольфрамата, хромата. [c.145]

    Определение кобальта измерением оптической плотности экстракта в ультрафиолетовой области спектра [1011]. К анализируемому раствору, содержащему 0,2—10 мкг[мл Со и имеющему pH от 3,0 до 5,3 (устанавливают необходимое pH растворами хлорной кислоты и гидроокиси аммония), прибавляют 25 мл 44%-ного раствора роданида аммония, разбавляют водой до 50 мл и экстрагируют двумя порциями по 20 мл изоамилового спирта, насыщенного роданидом аммония. Экстракт разбавляют изоамиловым спирто.м до 50 мл и измеряют оптическую плотность экстракта на спектрофотометре При длине волны 312 ммк. Определенню не мешают 5 мкг никеля, 10 мкг ванадата илн меди, 25 мкг свинца, 50 чкг иодата, 75 мкг марганцп, 100 мкг молибдата, люминия и цинка в 1 мл раствора. Мешают ионы тре.хвалентного железа, уранила, трехвалентного и шестивалентного хрома, ферроцианида, олова, иит-рат-ионы и титан. [c.157]

    В кислых средах для отделения вольфраматов и молибдатов от других ионов удобно пользоваться лимонной кислотой, образующей с молибдат- и вольфрамат-ионами прочные комплексы. Клемент [53] изучал отделение молибдат-ионов от таких металлов, как медь, свинец, никель, железо, хром и ванадий (IV), которые в лимоннокислой среде при pH 1 могут быть поглощены катионитами в Н-форме. Как показали И. П. Алимарин и А. М. Медведева [3], при более высоких значениях pH поглощение катионов затрудняется вследствие образования цитратных комплексов. Методика Клемента была тщательно проверена и слегка видоизменена Уоткинсопом [118 ], который установил, что она пригодна также для удаления элементов (железа, меди, олова и ванадия), мешающих спектрофотометрическому определению вольфрама (вольфрам и молибден оказываются в вытекающем растворе). Метод применялся для определения этих элементов, а также ванадия, в почвах и растениях. Аналогичный метод использовался для удаления иопов, мешающих полярографическому и снектрофотометрическому определению молибдена в сталях [17. 84] и минералах [51]. Если в растворе присутствует ванадий в виде ванадата, то перед катионообменным отделением от молибдата он должен быть восстановлен двуокисью серы [56]. [c.352]


    При добавлении избытка раствора молибдата к кислому раствору, содержащему ионы ортофосфата, возникает желтая окраска [6] вследствие образования фосфорномолибденовой кислоты Нз[Р(МозОл,)4 (х + 2)Н20. Оптимальными условиями ее образования является конечная концентрация молибдата около 0,04 М и конечная концентрация НС1О4 или НМОз около 0,25 М. Оптимальный интервал концентраций фосфора 1—15 мкг1мл, если оптическую плотность измерять при 389 ммк. Растворы подчиняются закону Бера. Определению мешают главным образом ионы силиката, арсената, вольфрамата, ванадата и висмута. Также мешают двухвалентные никель и медь и фторид при концентрации соответственно выше 40, 100 и 25 мкг1мл. [c.19]

    Фосфорномолибденовая кислота экстрагируется селективно, и ионы силиката, арсената и германата не мешают, в то время как при обычном методе определения по образованию фосфорномолибденовой кислоты названные ионы мешают определению. Уэйдлин и Меллон [26] исследовали зкстрагируемость гетерополикислот и установили, что 20%-ный по объему раствор бутанола-1 в хлороформе селективно извлекает фосфорномолибденовую кислоту в присутствии ионов арсената, силиката и германата. Предложенный ими метод позволяет определить 25 мкг фосфора в присутствии 4 мг мышьяка, 5 мг кремния и 1 мг германия. Более того, при экстракции удаляется избыток молибдата, поглощающего в ультрафиолетовой области. Измерение оптической плотности экстракта при 310 ммк обеспечивает увеличение чувствительности метода. Для получения надежных результатов необходимо строго контролировать концентрацию реагентов. Определению не мешают ионы ацетата, аммония, бария, бериллия, бората, бромида, кадмия, кальция, хлорида, трехвалентного хрома, кобальта, двухвалентной меди, йодата, йодида, лития, магния, двухвалентного марганца, двухвалентной ртути, никеля, нитрата, калия, четырехвалентного селена, натрия, стронция и тартрата. Должны отсутствовать ионы трехвалентного золота, трехвалентного висмута, бихромата, свинца, нитрита, роданида, тиосульфата, тория, уранила и цирконила. Допустимо присутствие до 1 мг фторида, перйодата, перманганата, ванадата и цинка. Количество алюминия, трехвалентного железа и вольфрамата не должно превышать 10 мг. [c.20]

    Окрашенные ионы металлов — марганца, трехвалентного хрома, трехвалентного железа, кобальта, пятивалентного и шестивалентного молибдена — мало поглощают или совсем не поглощают свет при 765 ммк. С другой стороны, четырехвалентный и пятивалентный ванадий, двухвалентная медь и в меньшей степени никель поглощают при 765 ммк и мешают определению кремния, поэтому их надо удалить или скомпенсировать их влияние. Кроме того, трехвалентное железо, пятивалентный ванадий, шестивалентный молибден и двухвалентная медь мешают, окисляя хлористое олово, которое добавляют для восстановления кремнемолибденового комплекса. Трехвалентное железо в момент добавления ЗпСЬ может присутствовать в количестве не более 2—3 мг, в противном случае получаются заниженные для кремния результаты. Мешающее влияние железа можно устранить его восстановлением до двухвалентного состояния в серебряном редукторе перед добавлением молибдата аммония. Двухвалентное железо частично восстанавливает кремнемолибденовый комплекс до молибденовой сини, но не восстанавливает молибдат аммония. К сожалению, этого нельзя сказать о пятивалентном молибдене [c.46]

    Мешающие вещества. Мешают определению сильные окислители, нитриты, фосфаты, особенно полифосфаты, хром и цинк в концентрациях, превышающих концентрацию железа более чем в 10 раз, медь и кобальт в концентрациях, превышающих 5 мг/л, никель в концентрациях, превышающих 2 мг/л. Висмут, кадмий, ртуть, серебро и молибдат-ионы осаждают фенантролин. Кипячением пробы с кислотой мо ф предратить полифосфаты в орто-. фосфаты и удалить азотистую кислоту. [c.107]

    Колориметрическое определение [2] красной окраски роданистого железа, возникающей при реакции раствора сернокислого закисного железа с перекисью водорода в присутствии роданистого аммония [88], обладает, по имеющимся данным, чувствительностью около 10 мг/л перекиси водорода. Для колориметрического определения перекиси водорода предложены также молибдат [89], окись меди [9Э], фенолфталеин [91], флуоресцеин [2], дихлор-диоксидифениламин [92] и аминопирин [93]. Аллен [94] сравнил между собой ряд микрохимических колориметрических методов определения перекиси водорода и озона и пришел к заключению, что для перекиси водорода наилучшим реактивом является перманганат. [c.467]

    Химическая природа катализатора в условиях реакхщи, как правило, остается невыясненной. Тем не менее номенклатура катализаторов, основанная на их химическом составе, представляется вполне удобной, хотя она часто неточна или даже неправильна. Такие названия, как алюмохромовые или алюмосиликатные катализаторы, дают определенное, хотя и неточное представление о составе катализаторов, и они широко применяются. В то же время сравнительно часто название "молиб-дат кобальта" употребляется применительно к катализатору, который вначале представляет собой систему окись кобальта -окись молибдена - окись алюминия. Это название дает представление о составе катализатора, но оно все-таки неправильно, поскольку катализатор не является молибдатом кобальта, а в активной форме это какие-то сульфиды. То же самое относится к таким названиям, как "хромит меди" или "хромит цинка". К сожалению, начинающий химик ввиду отсутствия более точной системы наименований должен осваивать такую номенклатуру. [c.21]

    Если в методе молибденовой сини не применять экстракцию, гопределению мешает большое число ионов, в частности, кремний (IV), германий(IV) и мышьяк (V). Мешающее влияние кремния можно устранить увеличением кислотности растворов или введением цитрата. Ниобий(V), тантал(V), олово (IV), вольфрам (VI), титан (IV), цирконий(IV) и висмут мешают определению, так 1 ак в условиях анализа образуют осадки, сорбирующие фосфат. Барий(II), стронций(II) и свинец(II) в сульфатных растворах осаждаются. Большие концентрации меди(II), никеля(II) и хрома (III), образующие окрашенные растворы, искажают результаты определения фосфата. Ванадий (V) мешает, так как образует ванадомолибдофосфатный комплекс. Влияние ванадия можно устранить, если его восстановить до ванадия (IV) перед введением молибдата аммония. Железо можно перевести в яон железа (II). Мешающее влияние нитрата устраняют при [c.459]

    Определения других показателей выполняют колориметрическими методами содержание железа с о-фенантролином или (менее удобный способ) с сульфосалицилатом содержание меди с бмс-циклогексаноноксалилдигидразоном (купризоном) или с 4-(2-пиридилазо)резорцином (ПАР) содержание кремневой кислоты — по синему кремнемолибденовому комплексу. Все эти методы достаточно быстрые, однако ими в некоторых случаях определяется лишь часть веш ества, которая находится в реакционноспособном состоянии. Папример, кремневая кислота частично присутствует в форме, не реагируюш ей с молибдатом аммония, по-видимому, вследствие грубой дисперсности частиц кварца или природных силикатов (глин). Точно так же и окислы железа растворяются в кислотах лишь после продолжительного нагревания жидкости, часто для этого требуется даже глубокое ее упаривание, что удлиняет анализ. [c.77]

    Содержание кремния в некоторых полупроводниковых материалах очень мало, поэтому при анализе сурьмы, галлия, индия и таллия [148] предварительно отделяют основные компоненты, а затем определяют кремний в виде синего кремнемолибденового комплекса после экстракции его изоамиловым спиртом. При этом сурьму отгоняют в виде трехбромистой, отделяют галлий в виде оксихино-лината, индий в виде трихлорида, а таллий в виде окиси. При определении кремния в силуминах в качестве восстановителя применяют эйконоген —ЭХТ-кислоту [149]. Рекомендовано при определений кремния в чистой меди [150] применять раствор молибдата аммония с определенным значением pH. Разработаны методы определения кремния в продуктах цинкового производства [151] и экстракционно-фотометрический метод определения кремния в ниобии, тантале [152] и металлическом никеле [153]. Экстракцию проводят н-бутанолом, хотя удобнее применять изоамиловый спирт. Экстракция применена также при определении кремния в чистой воде [154], в морской воде [155], в железе и стали [156], в хроме высокой чистоты [157], в плавиковом шпате [158] и других объектах. [c.128]

    Для определения примеси фосфора в азотной и соляной кислотах препарат упаривали на коллекторе Ыа2304 (2—3 мг), сухой остаток растворяли в разбавленном растворе азотной кислоты нитраты металлов — в том же растворе азотной кислоты, карбонаты металлов и оксиды меди и свинца — в азотной кислоте. В азотнокислый раствор препарата вводили раствор молибдата натрия в соответствии с областью оптимизации экстракции. ФМК экстрагировали бутилацетатом, к экстракту добавляли бутанол до 30—40% по объему для увеличения диэлектрической проницаемости органического раствора и восста- [c.112]

    Ускоряющие добавки. Стабилизаторы в концентрациях, оказывающих эффективное стабилизирующее действие, в большей или меньшей степени уменьшают скорость меднения. Ускорить процесс осаждения меди можно увеличением концентраций реагирующих веществ или температуры, но при этом обычно уменьшается стабильность раствора. Однако в некоторых случаях возможно и увеличение скорости меднения при сохранении стабильности раствора. Уже упоминалось ускорение процесса под действием некоторых лигандов (см. стр. 103). Кроме того, в качестве ускоряющих добавок предложено использовать соединения осмия — 0з04 или осмиаты [81] (добавка 0,5 мг/л ускоряет процесс в два раза), анионы — ацетат, нитрат, хлорид, хлорат, перхлорат, молибдат, вольфрамат, формиат, тартрат, цитрат, лактат, фталат [82] (наиболее сильно действует окса-лат — при концентрации примерно I моль/л он увеличивает скорость до 2 раз) органические соединения иода (в определенном интервале концентраций) [68]. Показано [83], что путем подбора концентраций компонентов раствора, содержащего смесь лигандов— тартрат и ЭДТА, добавки феррицианида и цистина, можно в 2—3 раза увеличить скорость меднения в стабильном растворе, хотя получаемые при этом покрытия отличаются значительной шероховатостью. [c.116]


Смотреть страницы где упоминается термин Определение молибдата меди: [c.236]    [c.389]    [c.87]    [c.17]    [c.326]    [c.41]    [c.97]    [c.97]    [c.224]    [c.58]    [c.15]    [c.94]    [c.205]    [c.484]   
Смотреть главы в:

Фазовый анализ руд и продуктов их переработки -> Определение молибдата меди




ПОИСК





Смотрите так же термины и статьи:

Медь, определение

Молибдаты

Окисление соединений, содержащих серу, молибдат-ионом (определение меди)



© 2025 chem21.info Реклама на сайте