Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Галлий теплота образования соединений

    Кроме того, в ряду В—А1—S —Y—La—A (в противоположность ряду В—А1—Ga—In—TI) закономерно увеличиваются атомные и ионные радиусы. Таким образом, следует ожидать, что в ряду В—Ас свойства однотипных соединений должны изменяться более закономерно, чем в ряду В—Т1. Сказанное подтверждается, например, при сопоставлении теплот образования оксидов элементов подгруппы скандия, подгруппы галлия и типических элементов третьей группы [c.511]


    Значения теплот образования соединений элементов III группы в функции атомного номера представлены на рис. 34. Наиболее полные данные имеются по хлоридам, йодидам и окислам. Теплоты образования хлоридов бора, алюминия и скандия лежат на прямой, сильно наклоненной вправо. В точке, отвечающей хлориду скандия, наклон изменяется. При переходе к хлориду актиния вновь наблюдается перелом. Ветвь кривой для галлия, индия и таллия проходит правее, что соответствует меньшей прочности их хлоридов по сравнению с хлоридами более электроположительных переходных металлов (скандия, иттрия, лантана, актиния) и лантаноидов. Точка, соответствующая теплоте образования хлорида галлия, смещена вправо, а хлорида индия — влево по отношению к общему ходу ветви, соединяющей теплоты образования хлоридов алюминия и таллия. Это точно соответствует сдвигам этих элементов (см. табл. И). Гадолиний и лютеций по теплотам образования хлоридов лежат на ветви, отходящей от лантана вправо. Для фторидов и бромидов — элементов III группы — [c.112]

    В табл. III.21 сопоставляются данные по частотам валентных колебаний ДА-связей и теплотам образования комплексов. Нетрудно видеть, что величины —AW и Удд изменяются симбатно при переходе от одного комплексного соединения бора к другому. То же наблюдается в рядах комплексов алюминия и галлия. Однако обращает на себя внимание тот факт, что при близких величинах —АЯ° частоты колебаний Удд комплексов бора выше, чем у аналогичных комплексов алюминия, а у последних выше, чем у комплексов галлия. Такая последовательность изменений объясняется увеличением массы атома-акцептора при переходе от бора к галлию (эффект массы). Такое же влияние на величины Гдд может оказывать масса атома-донора. [c.157]

    Ряд гетероатомных соединений имеет характерные величины дипольных моментов дналкил- и арилсульфиды 5,177—5,344 X X 10 ° Кл-м, алкил- и диалкилтиофаны 6,179—б, 212-10 ° Кл-м, тиофены 1,870-10 ° Кл-м, что установлено опытами с индивидуальными сульфидами [254]. Процессы комплексообразования в зависимости от строения нефтяных сульфидов могут быть изучены методами криоскопического и диэлектрометрического титрования. Сульфиды, взаимодействуя с галогенидами металлов, образуют устойчивые комплексы с хлоридом алюминия и галлия 1 1, тетрахлоридами олова и титана — 1 2. Тетрахлориды олова и титана практически не образуют комплексов с циклическими сульфидами, содержащими углеводородные радикалы в а-положении по отношению к атому серы, с диалкилсульфидами, углеродная цепь которых имеет разветвленное строение в а-положении, и с арилсульфидами. Дипольный момент взаимодействующих с тетрахлоридом олова циклических сульфидов находится в пределах 16,33—17,33 Кл-м. Дополнительную характеристику структуры молекул сульфидов дают калориметрические исследования. Экспериментально определяемые значения теплот образования комплексов сильно зависят от строения, сульфидов и составляют 50—55 кДж/моль для диалкилсульфидов и 29—34 кДж/моль для циклических сульфидов. [c.143]


    Главная подгруппа III группы может служит характерным примером того правила, что первый элемент главной подгруппы по свойствам ближе к следующей главной подгруппе, а второй—к побочной подгруппе этой же группы. Бор, если не считать его валентность, по свойствам имеет очень мало общего со своими бо лее тяжелыми аналогами. Как кислотообразующий элемент, он стоит гораздо ближе к соседним углероду и кремнию. У алюминия общего с элементами побочной подгруппы третьей группы значительно больше, чем у бора. Он близок им не менее, чем тяжелым аналогам главной подгруппы. Во многих отношениях он занимает отчетливое промежуточное положение между бором и элементами побочной подгруппы, а не между бором и элементами главной подгруппы. Например, электроположительный характер правильно возрастает от бора через алюминий к лантану, в то время как в ряду бор — алюминий — галлий — индий — таллий, как уже указывалось, такое возрастание отсутствует. Теплоты образования хлоридов и окислов закономерно возрастают от бора и алюминия к лантану, в то время как от алюминия к таллию они падают (см. рис. 1, стр. 34). Сходство алюминия с его тяжелыми аналогами из главной подгруппы особенно проявляется в одинаковом строении водородных соединений. С галлием и индием алюминий объединяет также такое характерное для этих элементов свойство, -как способность к образованию квасцов. [c.354]

    Нитриды GaN, InN, TIN принадлежат к соединениям типа А "В (А — элемент III группы, а В — элемент V группы). Эти соединения изоэлектронны простым веществам, образованным элементами IV группы (например, Si, Ge) и обладают полупроводниковыми свойствами. В большинстве полупроводниковых соединений типа, А "В атомы находятся в тетраэдрической координации друг относительно друга и кристаллизуются в решетке типа сфалерита или вюртцита. Так, GaN, InN и TIN кристаллизуются в решетке типа вюртцита, а МР, MAs, MSb, где M=Ga, In — в решетке типа сфалерита. Нитриды элементов подгруппы галлия отличаются высокой химической устойчивостью и близки по структуре к алмазу и алмазоподобному BN. Наибольшей химической устойчивостью отличается GaN. Он не взаимодействует с водой, разбавленными и концентрированными кислотами, устойчив при нагревании на воздухе до 1000° С. При комнатной температуре GaN является полупроводником, а при низких температурах обладает сверхпроводимостью. По своей химической устойчивости InN значительно уступает GaN, он легко реагирует с растворами кислот и щелочей, окисляется на воздухе выше 300° С. Теплоты образования GaNxB и InNxB при 25° С соответственно равны 26,4 и 4,2 ккал/моль. [c.177]

    При образовании некоторых, сульфидов и их аналогов (например, щелочных и щелочноземельных металлов, магния, цинка) выделяется много теплоты, реакция протекает очень бурно, и ампула, особенно стеклянная, разрушается. Поэтому металл следует брать не в виде тонкого порошка, а в виде стружки, мелких гранул или крупки. Щелочные и щелочноземельные металлы и некоторые другие разрушают стекло и загрязняют продукты реакции соединениями кремния. Поэтому их сульфиды получать таким способом нельзя. Этим методом можно получать сульфиды, селениды элементов подгруппы железа, хрома, ванадия, титана, галлия, а также меди, серебра, марганца. В тех случаях, когда вещество пе плавится, обычно после 1—2-часового нагревания прп температуре, рекомендованной в прописях, оно будет неоднородно по составу. Рекомендуется ампулу разбить, вещество растереть в ступке, снова поместить в ампулу, запаять ее, а затем назревать в течение 2—3 ч (можно еще раз не нагревать, но тогда процесс должен длиться 10—15 ч). [c.47]

    Соединения с кислородом. Окись 1П2О3 получают, прокаливая гидроокись галлия или его нитрат. Она светло-желтая, приобретает при нагревании коричневую окраску. Кристаллизуется в кубической решетке типа МП2О3. Плотность 7,1 г/см . Легко растворяется в кислотах, если не была подвергнута сильному и продолжительному прокаливанию. Прокаленная окись индия на холоду реагирует с кислотами очень медленно, но хорошо растворяется в разбавленных кислотах при нагревании. Щелочи на нее не действуют. Теплота образования 221 ккал/моль. При 700—800° восстанавливается водородом или углеродом до металла. Плавится при 1910°. Нелетуча. При нагревании выше 1200° частично диссоциирует, образуя низший окисел [21. Монокристаллы окиси индия в виде прозрачных зеленоватых кубиков или октаэдров получают путем, транспортной реакции [7  [c.282]

    Образование соединений состава Ag Bj наиболее характерно для халькогенидов элементов III Б подгруппы. В отличие от халькогенидов этих же элементов состава AIIIBVI соединения алюминия, галлия и индия состава A BJ имеют наибольшие теплоты образования и в большинстве случаев более высокие температуры плавления, что иллюстрируют данные табл. 26. [c.197]

    Маргрейв и др. [31] показали, что при нагревании смесей окислов галлия и индия с окисью лития образуются газообразные окисные соединения ЫОаО и Ы1пО. Величина теплоты образования этнх молекул соответственно 184 7 ккал моль и 179 + 5 ккал моль. [c.25]


    Элементы главной подгруппы III группы в соединениях, в которых их валентность соответствует номеру группы, максимально трехвалентны. Бор и алюминий образуют только очень ограниченное число соединений, в которых они проявляют низшие степени окисления. Напротив, галлий, индий и таллий очень легко могут быть переведены в низшие валентные состояния. Но в этом состоянии галлий и индий, однако, менее устойчивы, чем в трехвалентном. Таллий же чаще встречается в одновалентном состоянии, чем в трехвалентном. Кроме того, таллий в трехвалентном состоянии в противоположность галлию и индию имеет лишь очень небольшое сходство со вторым элементом главной подгруппы III группы — алюминием, к которому галлий и индий во многих отношениях очень близки. Их гидроокиси, так же как и гидроокись алюминия, амфотерны. Их соли, так же как и соли алюминия, в водных растворах частично гидролизованы. Как и алюминий, галлий и индий образуют квасцы, т. е. двойные сульфаты типа М1М1И(304)2 12НгО (конечно, не в такой степени, как алюминий). Трех-валептный таллий образует двойные сульфаты другого типа, а именно типа МЩ11 (304)г HgO. Но и алюминий образует двойные сульфаты этого типа, и их кристаллизацию при определенных условиях, в которых они вообще способны существовать, можно вызвать добавлением соответствующего двойного сульфата таллия. Помимо способности легко переходить в низшие степени окисления, галлий, индий и таллий отличаются от бора и алюминия меньшей теплотой образования их окислов и легкой восстанавливаемостью их до металла. В металлическом состоянии вследствие мягкости и низких температур плавления они очень сильно отличаются от алюминия и особенно от бора. [c.314]


Смотреть страницы где упоминается термин Галлий теплота образования соединений: [c.530]    [c.411]    [c.223]    [c.225]    [c.66]    [c.66]    [c.68]    [c.317]    [c.368]    [c.3]    [c.764]   
Курс неорганической химии (1963) -- [ c.358 ]

Курс неорганической химии (1972) -- [ c.320 ]




ПОИСК





Смотрите так же термины и статьи:

Галлай

Галлий

Галлия соединения

Галлы

Теплота образования

Теплота образования соединения

Теплота соединения



© 2025 chem21.info Реклама на сайте