Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Аддитивное свойство кристаллических растворов

    Действительно, расчет параметров кристаллической решетки растворов по правилу аддитивности с использованием параметров кристаллической решетки компонентов, расположенных в правых частях уравнений (1) и (2), дает в этом случае значения 8,493 и 8,500 А, близкие к найденным экспериментально соответственно для первого и второго составов (рис. 1). Тем самым подтверждается, что распределение ионов по кристаллографически неэквивалентным узлам шпинельной решетки в обсуждаемых растворах близко к аддитивному, составленному из распределений, свойственных компонентам, расположенным в правых частях уравнений (1) и (2). Следует ожидать, что ряд других физических и физико-химических свойств растворов в системе Мп—V—Fe—О подчиняется этой закономерности. [c.65]


    Здесь уместно отметить, что применение аддитивных схем для расчета свойств кристаллических веществ в общем случае не дает точных результатов. Это относится не только к объему, но, например, и к энтропии. О невозможности применения аддитивного метода расчета для энтропии (см. 163]) свидетельствует некоторое несовпадение значений энтропий кристаллических ионов, рекомендованных в различных работах, посвященных аддитивному расчету этой функции [64—66а]. Неприменимость уравнения (I, 76) для S видна и из рис. 153, показывающего, что энтропия относится к свойствам, для которых скорее справедливо уравнение (VIII, 1), чем (I, 76). К сожалению, ограниченность и недостаточная точность экспериментальных данных не делает это суждение бесспорным. Однако из рис. 153 все же можно заключить, что приписывание — в отличие от состояния в бесконечно разбавленном растворе (см., например, рис. 167) — каждому иону в кристаллическом состоянии постоянного значения энтропии является не очень точным. Даже для чисто ионных соединений энтропия данного иона зависит от состояния его электронной оболочки, которое может быть различным в зависимости от поляризующего действия соседних ионов. Однако это не исключает параллелизма в изменении состояния электронной оболочки для сходных атомов, о чем свидетельствует как прямизна соответствующих линий на рис. 153, так и их пересечение практически в одной точке. [c.221]

    От положения примеси в твердой фазе существенно зависит и то влияние, которое она оказывает при прочих равных условиях на свойства вещества. Например, если примесь образует механическую смесь, ее влияние зачастую может свестись к простому сложению значений данного свойства двух веществ с учетом доли каждого из них. Разумеется, это касается тех характеристик, которые по своей природе обладают свойством аддитивности. К ним, в частности, относятся удельный вес, диэлектрическая проницаемость и т. п. Если же примесь образует твердый раствор, изменение физических и химических свойств вещества будет обусловливаться теми изменениями, которые будут возникать при этом в самой кристаллической решетке. Сюда относятся различного рода дефекты, вакансии, искажения. Особенно сильно влияние внедряющихся в решетку примесей на так называемые структурно-чувствительные свойства [33]. [c.93]

    При образовании непрерывных твердых растворов в соответствии с законами Курнакова изотермы состав — свойство представляют собой плавные кривые, на которых иногда наблюдаются экстремумы вблизи 50% одного из компонентов. В частности, такие экстремумы характерны для изотерм а = (хц) и Н-в = Цхп) (см. рис. 160), что объясняется максимальными искажениями кристаллической решетки для средних составов, а не свидетельствует о качественном своеобразии эквиатомного сплава. Изотерма молярного объема для идеального раствора представляет собой аддитивную прямую. Для реальных растворов, которые образуются с изменением объема вследствие заметного химического вклада во взанмо- [c.376]


    При образовании ограниченных твердых растворов изотермы состав — свойство в пределах области гомогенности имеют вид плавных кривых, в гетерогенной области — аддитивных прямых (рис. ПО). При отсутствии взаимодействия (расслоение) свойства каждой фазы в твердом состоянии остаются постоянными. От расслоения к непрерывным твердым растворам возрастает химический вклад во взаимодействие. Этот вклад, однако, определяется фактором низшего порядка — размерным, поэтому взаимодействие не приводит, как прави.яо, к образованию химических соединений. В самом деле, основным критерием образования непрерывных твердых растворов является сходство физико-химического характера взаимодействующих компонентов, что определяется близостью значений ОЭО, электронного схроения и типа химической связи. Кроме того, в соответствии с правилом Руайте размеры атомов при. этом не должны различаться более чем на 8 — 15%, что с учетом подобия остальных факторов предопределяет одинаковый тип кристаллической решетки. Если при сходстве электронных конфигураций и значений ОЭО атомные размеры компонентов отличаются более значите.пьно, то вместо непрерывных образуются ограниченные твердые растворы с возникновением между ними гетерогенной области — эвтектической смеси. Образование эвтектики возможно и тогда, когда атомные размеры компонентов близки, а электронное строение различно. Это различие не должно возрастать настолько, чтобы существенным становился вклад электроотрицательности, поскольку тогда возможно образование химических соединений. [c.214]

    Неадекватность модели Борна означает, что существуют какие-то другие вклады в ДС ., причем особенно важны ближние взаимодействия с молекулами растворителя. Один из очевидных источников отклонения модели Борна от реальности состоит в том, что в действительности нельзя пользоваться диэлектрической проницаемостью растворителя, когда рассматривается область раствора вблизи иона, где, как показывают диэлектрические инкременты (разд. З.Б), утрата вращательной подвижности ближайших молекул воды нарушает взаимодействия, обусловленные ориентационной поляризацией, и тем самым резко снижает D (табл. 2.4). Зависимость D от ионного поля можно включить в уравнение Борна [346], однако это не приводит к правильному описанию свойств одно- и двухзарядных катионов. Другие способы усовершенствования уравнения (2.5) сводятся к подбору г либо путем принятия для кристаллических радиусов значений [88, 674], отличных от полученных Полингом, либо путем уточнения значений этих радиусов с помощью аддитивных поправок. Если прибавлять по 0,85 и 0,10 А к радиусам катионов и анионов соответственно, то полученные значения г+ и г наилучшим образом удовлетворяют обычным значениям AG dr по уравнению (2.5) для ионов галогенов и щелочных металлов [543]. Если пропорционально изменить вклады отдельных ионов таким образом, чтобы катионы и анионы укладывались в единую закономерность, то результирующие значения — ДС jr отличаются от приведенных в табл. 2.12 и оказываются примерно на 8 ккал/моль завышенными для катионов и на столько же заниженными для анионов. Стоке [765] подставил в первый член уравнения (2.5) радиусы ионов в газовой фазе, которые он получил, исходя из квантовомеханичёских оценок для изоэлектронных инертных газов. Если еще принять, что электрострикция приводит к пони- [c.274]

    Появление окраски в нагретых ацетоновых растворах пиромеллитового диангидрида, малеинового ангидрида и фталевого ангидрида позволяет предположить возможность существования комплексов переноса заряда, образованных не по механизму Н-связи. Изучение спектров поглощения смесей ацетон — ангидрид в этил-ацетате также подтвердило взаимодействие в этих системах и показало отклонение от аддитивности в системе с диметилфталевым ангидридом. Так как наименьшая разница между расчетным и экспериментальным спектрами оказалась в системе, содержащей малеиновый ангидрид, то эти отклонения можно трактовать как результат изменения переноса заряда между ангидридной и остальной частью молекулы под влиянием комплексной связи с ацетоном. По аналогии с известной системой [4, 5] мы считали, что образование комплексов переноса заряда происходит здесь через кислородный мостик О . .. О". Тот факт, что удалось обнаружить взаимодействие с ацетоном, хотя разница между его потенциалом ионизации (9,69 эв) и потенциалом ионизации ацетофенона (9,65 эв) равна ошибке определения, объясняется, по нашему мнению, влиянием полярности среды—1,06Д у хлороформа и 1,810 у этилацетата [16]. Для наиболее прочных комплексов переноса заряда ангидридов определен эквимолярный состав соединений и их константа прочности. Если прочность комплексного соединения с пиромеллитовым диангидридом принять за единицу, то найденные в растворе соединения можно расположить в следующий ряд ПМДА — ацетон(1,оо) МА — ацетоН о,зз) -> ФА — ацетон(о,18), т. е. в этилацетатном растворе наиболее прочный комплекс переноса заряда образует ангидрид, у которого ангидридная группа выведена из плоскости бензольного кольца, а наименее прочный — молекула фталевого ангидрида. Ясно, что введение в молекулу фталевого ангидрида двух донорных заместителей будет еще больше подавлять акцепторные свойства его ангидридной группы. Выделить эти комплексы переноса заряда в кристаллическом виде из ацетона не удалось. Возможно, что эти соединения существуют только в растворе. [c.169]



Смотреть страницы где упоминается термин Аддитивное свойство кристаллических растворов: [c.65]    [c.66]   
Физическая химия силикатов (1962) -- [ c.115 ]




ПОИСК





Смотрите так же термины и статьи:

Растворов свойства



© 2025 chem21.info Реклама на сайте