Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Карбоксипептидаза конформаци

    Пенициллин имеет структурное сходство с конформацией субстрата, т, е. D-Ala-D-Ala фрагментом (рис. 12, 9), поэтому может занимать на активном центре карбоксипептидазы место, предназначенное для субстрата. Такое блокирование [c.426]

    Теперь мы можем оценить значение индуцированных субстратом структурных изменений в активном центре карбоксипептидазы А. В результате связавшийся на ферменте субстрат оказывается со всех сторон окруженным каталитическими группами. Это обеспечивает возможность катализа по причинам, о которых говорилось выше. Совершенно очевидно, что только гибкость структуры фермента обеспечивает попадание субстрата в сферу действия системы каталитических групп (и выход продуктов реакции из этой системы). В целом гибкая структура фермента имеет преимущество перед жесткой в том отношении, что она обладает гораздо большим выбором возможных конформаций, пригодных для катализа и сохраняющихся в процессе отбора. Кроме того, индуцированное соответствие вносит вклад в повышение специфичности фермента. В самом деле, в случае карбоксипептидазы А субстрат должен иметь концевой карбоксилат-ион фермент проверяет его наличие таким путем если концевой карбоксилат-ион имеется, то он образует солевую связь с аргинином-145, а это вызывает перемещение тирозина-248 в каталитически активное положение если же концевого карбоксилат-иона нет, то ти-розин-248 остается на месте и фермент не проявляет активности. Другими словами, индукция соответствия может функционировать как динамический процесс узнавания. [c.149]


    Этим функции белка как фермента или апофермента скорее всего не исчерпываются. Все рассмотренные ме-чанизмы предполагали достаточно статичное расположение функциональных групп белка в активном центре Это не совсем верно. Взаимодействие с субстратом нередко сопровождается изменением конформации белковой молекулы, и согласно теории, выдвинутой Кошландом, направленные конформационные изменения белка являются важным фак1чэром ферментативного превращения. В отдельных случаях такие изменения зарегистрированы с помощью рентгеноструктурного анализа. Например, карбоксипептидаза А была подвергнута рентгеноструктурному анализу как в отсутствие субстрата, так и в комплексе с глицил-1/-тирозином. Полость, в которой находится активный центр, существенно сужается при связывании этого субстрата, т.е, наблюдается отчет ливый конформационный переход. Кроме того, широко дискутируется и имеет в отдельных случаях убедительные подтверждения гипотеза, согласно которой фермент фиксирует субстрат в конс юрмации, существенно более близкой по своей геометрии к активированному комплексу реакции, чем конформация субстрата, преобладающая у несвязанных молекул. Это, естественно, должно приводить к снижению активационьюго барьера реакции и способствовать существенному ускорению превращения. [c.208]

    В последнее время появилась возможность изучать физические свойства белков такими методами, как температурный скачок, которые позволяют исследовать процессы с временами, соизмеримыми с временами каталитического превращения субстрата на ферменте, так что стало возможным непосредственно установить взаимосвязь между скоростями субстратзависи-мых конформационных изменений и скоростями самой реакции. В настоящее время имеется ун е несколько свидетельств в пользу существования изомеризации ферментов и ферментсубстратных комплексов, которые могут представлять собой конформационные изменения такого рода [49—52]. Скорость мономолекулярной изомеризации глицеральдегид-З-фосфатдегидрогеназы характеризуется константой порядка 1 с и является слишком медленной, чтобы этот процесс имел место при каждом обороте фермента по-видимому, этот процесс относится к явлениям контроля ферментативной активности. Рентгеноструктурный анализ лизоцима [28], химотрипсина [54] и карбоксипептидазы [55] дал прямое доказательство существования изменений в конформации фермента при взаимодействии с субстратами или ингибиторами. Гемоглобин, хотя и не является ферментом, но может быть поучительным примером использования всех этих методов для демонстрации конформационных изменений при взаимодействии этого белка с кислородом [56]. [c.243]


    ТИПИЧНОЙ чертой этой структуры является высокая степень спиральности (до 70% всех аминокислотных остатков включаются в а-спиральные сегменты структуры). В Р-химотрипсине, напротив, а-спиральную конформацию имеет лишь очень небольшой С-концевой участок цепи (3—4%), а основная часть цепи свернута в структуру типа (3-складчатой. В лизоциме (рис. 25) имеются участки как с а-спиральной, так и с р-складчатой структурами. Для этого белка-фермента характерно наличие глубокой ш,ели, или впадины, которая создается при укладывании полипептидной цепи и имеет существенное значение в процессе ферментативного действия этого белка (см. главу Ферменты ). В структуре рибонуклеазы и карбоксиангидразы С почти не найдено спиральных участков. Зато в карбоксипептидазе А обнаружены обширные спиральные и складчатые области. [c.155]

    Метод теоретического конформационного анализа был использован для изучения невалентных взаимодействий а-химотрипсина с рядом простейших субстратов, лизоцима с триацетилглюкозамином, рибонуклеазы с уридин- 2, З -циклофосфатом, карбоксипептидазы А с пептидными и эфирными субстратами. К сожалению, в силу ограниченной точности этот метод не всегда дает однозначный ответ о наличии напряжений в комплексе. Тем не менее обилий вывод из проведенных теоретических исследований состоит в следуюш ем. Хотя образование комплекса Михаэлиса сопровождается конформационными изменениями, однако посадка субстрата не вызывает в молекулах субстрата и фермента ни избыточного конформационного напряжения, ни образования какой-либо принудительной конформации. На а-химотрипсине было показано, что в предкаталитической стадии структурные элементы его активного центра находятся в ненапряженном состоянии. [c.423]

    Причина этих различий, вероятно, в том, что использованные для ренгено-структурного анализа кристаллы карбоксипептидазы А имели необычную форму и кристаллографические характеристики [1371]. Было показано также, что конформации карбоксипептидазы В различаются в кристалле и растворе [1372]. По добное положение отмечалось и для ферментов других классов (см., например [1373]). [c.96]

    Известны многочисленные данные, свидетельствующие о подвижности групп в белковых молекулах и многообразии конформационных состояний белков в целом (см. обзоры [1375-1379]. Во многих случаях изменение конформации происходит при изменении внешних условий (pH, температура и т.п.) или же при присоединении лигандов. Однако и при фиксированных условиях белки, по-видимому, существуют в нескольких или многих состояниях, взаимопревращения между которыми происходят достаточно быстро. Это следует, во-первых, из экспериментов по изотопному обмену протонов в белках, выявляющему наряду с быстрой стадией обмена также и более медленную стадию, которую относят к обмену протонов внутри глобулы, скорость которой лимитируется скоростью конформационного изменения белка [138О]. Во-вторых, такие изменения можно проследить, используя "репортерные группы , введенные в белок, и исследуя спектральные или иные физико-химические изменения, происходящие с белком. Например, в случае модифицированной карбоксипептидазы удалось обнаружить рН-не-зависимый конформационный переход с кажущейся константой скорости около Б с [1381]. Далее конформационная подвижность в белках прослеживается методами ядерного магнитного резонанса высокого разрешения [1382] по положению и форме сигналов от отдельных атомов и групп. Существует много других способов констатации конформационных изменений в белках [1383-1385], рассматривать которые здесь не представляется возможным. Единственно хотелось бы упомянуть о принципиальной возможности априорного расчета относительно небольших белковых молекул, дающего сразу сведения об энергиях большого набора состояний белка и, следовательно, о его конформационных возможностях [153,1386], а также о возможности компьютерного моделирования подвижности белков методами молекулярной динамики [1387,1388]. [c.96]

    Из кристаллографических данных следует, что механизмы активации трипсиногена и химотрипсиногена сходны [26]. Исследование методом кругового дихроизма ацилферментных интермедиатов, образующихся в ходе катализа трипсином и трипсиногеном, показало, что субстрат связывается с ферментом и с зимогеном по-разному. Интересно, что присоединение N-концевого дипептида трипсина Ile-Val (табл. 3.3) к трипсиногену индуцирует переход последнего в трипсиноподобную конформацию и, наоборот, блокирование N-концевого Не в молекуле трипсина индуцирует конформацию, подобную таковой у трипсиногена [26, 27]. Степень гомологии аминокислотных последовательностей двух изоферментов — карбок-сипептидаз А и В —составляет 51% [28]. Третичная структура карбоксипептидазы А (но не карбоксипеп-тидазы В) установлена с разрешением 0,2 нм конформации зимогенов и, следовательно, структурные изменения, сопровождающие активацию, неизвестны. [c.44]

    Предполагаемся, что многие ферменты в отсутствие субстратов находятся в неактивном состоянии и что функциональные группы их активных центров не ориентированы в пространстве надлежащим образом для взаимодействия с комплементарными группами субстрата. Однако при связывании специфического субстрата происходит такое конформационное изменение фермента и, следовательно, его активного центра, в результате которого соответствующие К-группы центра занимают необходимое для взаимодействия с субстратом положение это обеспечивает осуществ- ление каталитического процесса. Такие индуцированные субстратом конформационные изменения называют индуцированным со--ответствием его иллюстрирует схема, приведенная на рис. 8.8. Убедительные данные, свидетельствующие о конформационных изменениях щ)и связывании субстрата, основаны главным образом иа сравнении структур фермента, полученных методом рентгеноструктурного анализа, в присутствии и в отсутствие ингибиторов. В качестве примера можно указать на соответствующие данные для карбоксипептидазы (разд. 9.3.4) и лизоцима (разд. 9.3.3). Кроме того, ряд свойств ферментов, находящихся в растворенном состоянии, указывает на различие их конформации в присутствии и в отсутствие субстратов. Например, некоторые ферменты в присутствии субстратов утрачивают способность взаимодействовать со специфическими антителами многие ферменты в присутствии специфических субстратов оказываются более стабильными в отношении тепловой денатурации, у них изменяются показатели оптического вращения, они перестают диссоциировать на субъедини-ды у некоторых ферментов изменяются седиментационные характеристики. Принято считать, что в результате индуцированного со- ответствия может увеличиваться скорость некоторых ферментативных реакций однако обусловленное этим механизмом увеличение скорости, вероятно, относительно невелико по сравнению с соответствующими эффектами, обусловленными другими механизмами. [c.288]


    Пример 14-Л. Конформация карбоксипептидазы Л. В актив ном центре фермента карбоксипептидазы А содержится тирозин, а в определенном положении вне активного центра — атом цинка. Путем диазотирования и последующего азосочетания можно присоединить арсаниловую кислоту к тирозину, находящемуся в активном центре. Спектр поглощения свободного арсанилазоти-розина значительно изменяется при связывании цинка. Спектр модифицированного белка в растворе такой же, как спектр модельного цинкового комплекса. Значит, белок упакован таким образом, что место расположения цинка и активный центр находятся недалеко друг от друга. Это особенно интересный пример, так как при изучении кристаллов с помощью рентгеноструктурного анализа показано, что цинк не располагается вблизи активного центра. Однако спектр репортерной группы в кристалле белка также свидетельствует об отсутствии связывания цинка. Следовательно, структура белка в растворе не такая, как в кристаллах, используемых для рентгеноструктурного анализа. [c.406]


Смотреть страницы где упоминается термин Карбоксипептидаза конформаци: [c.199]    [c.730]    [c.17]    [c.102]    [c.305]    [c.199]    [c.127]    [c.127]   
Физическая Биохимия (1980) -- [ c.406 ]




ПОИСК





Смотрите так же термины и статьи:

Карбоксипептидаза



© 2025 chem21.info Реклама на сайте