Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Спектр железа

Таблица 3.3. Некоторые характерные линии в спектре железа Таблица 3.3. <a href="/info/1522423">Некоторые характерные</a> линии в спектре железа

    Определить волновые числа спектральных линий в спектре излучения СМ, соответствующие переходам 0 -1, 1—2, 0—0, 1--1. Для этого прежде всего необходимо ознакомиться и разобраться и спектре излучения железа, сопоставив этот спектр, получе[шый на спектрограмме.со спектром железа в атласе спектральных линий (см. приложение рис. 204). [c.69]

    Для фотографирования спектра железа (спектра сравнения) в крышке ш,ели помещается призма сравнения. Призма сравнения 8 поднимается штифтом в нижней части оправы щели Железная дуга 9 помещается за щелью ио направлению, перпендикулярному основной оптической оси спектрографа. Объектив коллиматора направляет луч света на призменную систему /О Призменная система состоит из трех призм. Свет, разложенный призмами в спектр, фокусируется объективом ка- [c.42]

    Спектропроектор ПС-18 предназначен для изучения спектрограмм и их расшифровки. На экране спектропроектора получают резкое изображение снятых на фотопластинке спектров. Затем находят планшет атласа спектральных линий, соответствующий нужной области спектра, и совмещают спектры железа на изображении фотопластинки и на планшете. При этом фотопластинку помещают, на предметный столик, а планшет ла экран спектропроектора. На планшете длинными штрихами указаны положения спектральных линий элементов относительно спектра л елеза и их длины волн. При совмещении спектров железа в атласе и на пластинке искомая спектральная линия в спектре пробы должна находиться точно под штрихом на планшете. Аналогично идентифицируют еще 2—3 наиболее чувствительные линии элемента и только после этого делают вывод о его присутствии в пробе. [c.28]

    Изучение спектра железа. Полученную спектрограмму помещают эмульсией вверх на предметный столик спектропроектора так, чтобы длинноволновая часть спектра находилась справа. Фокусировкой объектива добиваются резкого изображения линий спектра на экране. Расшифровку спектра целесообразно на- [c.110]

    Для проверки правильности выполненной градуировки стилоскопа по длинам волн находят в атласе спектра железа линию с длиной волны 542,41 нм, а по дисперсионной кривой определяют соответствующее этой линии положение барабана. Устанавливают по барабану нужное "700 еоо боо 4оО деление и сопоставляют наблю- лина волны,нм даемый спектр с изображением [c.99]

    Сфокусировать и добиться резкого изображения спектра и индекса в поле зрения левого микроскопа. 13. Сопоставить спектр железа со спектром железа, приведенным в атласе спектральных линий железа (см. приложение рис. 204). Самые интенсивные три линии в спектре принадлежат линиям излучения ртути. Длина волны е-линии ртути 43.5,8 нм. По шкале длин волн в атласе спектральных линий железа найти линии, которые должны располагаться рядом с линией ртути. Сопоставлением наблюдаемой картины спектра найти все линии в спектре железа с номерами от 55 до 73. При этом производить для каждой линии отсчет на компараторе по правому микроскопу. 14. Определить, между какими нумерованными линиями железа располагается первая линия комбинационного рассеяния. Сделать отсчет по правому микроскопу для левой линии железа с меньшим номером, для линии комбинационного рассеяния и для правой линии железа с большим номером. 15. Определить, пользуясь таблицей волновых чисел (см. приложение табл. 4), волновые числа всех линий комбинационного рассеяния линейной интерполяцией. 16. Вычислить частоты колебаний. [c.80]


    Возвращают шкалу в исходное положение и перемещают кассету на 10 делений, нал имая кнопку на пульте спектрографа. Устанавливают ширину щели спектрографа 0,008 мм, вставляют перед щелью спектрографа диафрагму Гартмана (см. рис. 1.9) так, чтобы штрих шкалы перед цифрами 2, 5, 8 находился против края насадки щели, а цифры шкалы находились в нормальном (не перевернутом) положении. В этом случае за одну экспозицию на фотопластинке будут получены спектры железа, окружающие спектры проб. Устанавливают электроды из спектрально чистого железа в держателях штатива с межэлектрод-ным промежутком 2,0 мм при помощи специального шаблона. Закрывают дверцы штатива и устанавливают крышку на насадке щели. [c.30]

    Снимают крышку щели спектрографа, открывают затвор щели, нажав тумблер на пульте управления и включив одновременно секундомер, экспонируют спектр железа 30 с. Выключают генератор, передвигают диафрагму Гартмана в положение 9 и меняют электроды, устанавливая поочередно стержни исследуемой стали вместо железных электродов. Включают разряд дуги и экспонируют спектр стали 30 с. Аналогично экспонируют спектры других образцов, меняя положение диафрагмы Гартмана. [c.31]

    Совместить спектральные линии железа на планшете, выбранном из атласа, с линиями спектра железа фотопластинки. Полное совмещение можно наблюдать только в центральной части экрана длиной примерно 6 см. [c.31]

    Изучить спектр железа и зарисовать наиболее характерные и легко запоминающиеся группы близко расположенных спектральных линий (реперные линии спектра), учитывая их взаимное расположение и относительную интенсивность. Реперные группы линий железа позволяют легко ориентироваться в его спектре без миллиметровой шкалы, что после некоторого навыка позволяет быстро выполнять качественный анализ. [c.32]

    Устанавливают диафрагму Гартмана в положение 2, 8, 5, железные электроды в держателях штатива и фотографируют спектр железа. Экспозиция 15 с (дуга) и 60 с (искра). [c.34]

    Фотографируют спектр железа через 9-ступенчатый ослабитель (как указано в пункте 4). [c.34]

    Следующим этапом обучения является освоение техники фотографического спектрального анализа. Здесь в первую очередь необходимо приобрести навыки фотографирования спектров и получения качественных снимков. Параллельно с этим стоит затратить определенные усилия на расшифровку спектра железа, который во многих задачах спектрального анализа играет роль опорного при отождествлении спектральных линий других элементов. Приобретенные при этом навыки оказываются необходимыми при выполнении качественного анализа порошкообразной пробы на присутствие металлов. [c.93]

    Работа 4. Фотографирование и изучение дугового и искрового спектров железа [c.106]

    Спектр железа имеет большое число линий ( 4700 в видимой и УФ-об-ластях), более или менее равномерно распределенных по всему регистрируемому фотографическим способом диапазону длин волн. Спектр железа хорошо изучен. Длины волн его линий определены с необходимой точностью. Поэтому при решении задач качественного анализа спектр железа играет роль опорного для отождествления спектральных линий других элементов. Для быстрой ориентировки в спектре железа необходимо знать и по.мнить положение и вид характерных групп линий в разных областях спектра. Характеристики некоторых из них даны в табл. 3.3. [c.106]

    Расшифровка спектрограмм значительно упрощается при использовании атласов спектральных линий, представляющих собой фотографии спектра железа с привязанной к нему шкалой длин волн. Ввиду большого различия в дисперсии для каждого типа спектрального прибора должен применяться свой атлас. В табл. 3.3 указаны номера планшетов атласов для соответствующих участков спектра .  [c.106]

    Спектр пробы фотографируют встык со спектром железа, используя для этого диафрагму Гартмана. Расшифровку спектрограммы производят на спектропроекторе с помощью атласов спектральных линий элементов. О присутствии элемента в пробе судят по появлению его наиболее чувствительных линий в спектрограмме. [c.111]

    Не меняя параметров искрового генератора, фотографируют спектры анализируемых проб и образцов сравнения с временем экспозиции 60—90 с (в зависимости от чувствительности фотопластинки) после 30—60 с предварительного обыскривания рабочего участка поверхности образца (при закрытой щели спектрографа). После съемки каждого спектра кассету перемещают на 15 делений. Для облегчения нахождения аналитических пар линий фотографируют спектр железа без ступенчатого ослабителя с временем экспозиции 30 с. [c.121]

    Из приведенных на рис. 3.21 спектрограмм первая (/) относится к спектру пробы, полученному за первую минуту испарения навески в дуговом разряде с силой тока 10 А вторая (Я) — к спектру пробы, снятому через 3-х ступенчатый ослабитель за время от начала испарения (сила тока 10 А в течение первой минуты экспозиции) до полного выгорания навески (сила тока 20 А в последующую часть экспозиции). При этом с помощью специального экрана часть средней ступеньки ослабителя (отмечена на спектрограмме стрелкой) в течение первой минуты экспозиции была перекрыта, что позволяет увязать отождествление линий с фракционностью испарения элементов (см., например, разрыв в линни 2п 307,590 им). В промежуток между спектрами проб и под нижним спектром пробы впечатан спектр железа, сфотографированный с разными экспозициями. Внизу нанесена также шкала длин волн. [c.113]


    Фотографируют спектры железа и пробы (при силе тока дуги 5 А, расстоянии между электродами 2 мм) в последовательности, указанной ниже  [c.114]

    В порядке возрастания длины волны совмещают спектр железа на спектрограмме с соответствующим планшетом атласа и отождествляют линии в спектре пробы, учитывая при этом оценки интенсивности линии в 10-балльной шкале (индекс вверху справа от символа элемента), характеризующие появление линий в спектре в зависимости от содержания элемента в пробе  [c.114]

    Заряжают кассету спектрографа фотопластинкой и фотографируют спектр железа с временем экспозиции 30 с. Затем [c.118]

    После фотографирования спектра через диафрагму Гартмана перемещают кассету на 15 мм, устанавливают на щели 9-ступенчатый ослабитель и опять фотографируют спектр железа с временем экспозиции 15, 30 и 60 с, смещая каждый раз кассету на 15 мм. [c.124]

    Предварительно проводят измерения почернений линий в спектре железа, снятом через диафрагму Гартмана. Для этого выводят на измерительную щель участок линии, примерно соответствующий положению первой ступеньки в спектре, снятом через ослабитель. Открывают фотоэлемент (фотоумножитель) и сканируют линию влево и вправо, останавливая сканирование в момент регистрации максимального почернения линии. Из 3—4-х произведенных отсчетов находят среднее и записывают  [c.124]

    Монохромное фотометрирование. Для работы используют образцы, содержащие марганец или алюминий в небольших концентрациях. Спектр образца, содержащего марганец, возбуждают в дуге переменного тока с силой тока 3—4 А и фотографируют спектрографом при трехлинзовом освещении и ширине щели 0,040 мм с временем экспозиции 20—30 с. Для усреднения результатов получают 4—5 фотографий спектров в одинаковых условиях экспонирования. Через 9-ступенчатый ослабитель на ту же пластинку снимают спектр железа. [c.129]

    Спектр образца, содержащего алюминий, фотографируют через 9-ступенчатый ослабитель при тех же условиях. Встык с ним снимают спектр железа для отождествления нужных линий. [c.129]

    Последовательность выполнения работы. 1. Поместить спектрограмму на столик компаратора вверх эмульсией. 2. Сфокусировать изображение спектра в левом микроскопе. 3. Изучить спектр железа в т ,ебуемом диапазоне, сопоставляя все спектральные линии со спектром железа в атласе (см. приложение рис. 204). 4. Определить номера линий в спектре железа, между которыми расположена спектральная линия в изучаемом спектре. 5. Установить столик компаратора так, чтобы левая пронумерованная в атласе линия железа совпала с перекрестием в левом микроскопе. 6. Сделать отсчет по ии<але правого микроскопа. 7. Переместить столик компаратора до совпадения спектральной линии в изучаемом спектре с перекрестием. 8. Сделать отсчет по шкале правого микроскопа. 9. Переместить столик компаратора до совпадения правой проиумероваииой в атласе липни железа с перекрестием. 10. Сделать отсчет по шкале правого микроскопа. [c.61]

    Примечание, Линин в спектре излучения СМ, соотвегствующие переходам До -- — I, располагаются в области спектральных линий железа № 0 — 10 липни, соо1вс1 ст11у1()И1.ие переходам Ло = О, п — + 1 — в области лпннй в спектре железа. № —42. [c.69]

    Внимательно рассматривают спектр железа в окуляр прибора, сопоставляя его со спектром, изображенным на планшетах атласа спектральных линий. Находят в атласе спектра железа красную линию с длиной волны 639,36 нм, затем отыскивают эту же линию в поле зрения окуляра стилоскопа. Вращая обой- [c.97]

    Для вычисления межатомного расстояния необходимо определить среднее значение Леи. Для этого следуег выбрать такие линии в спектре железа, которые совпадают с линиями тонкой структуры. По шкале длин волн спектральных линий железа в атласе (см. рис. 204) определяются длины волн спектрал1>ных линий железа п рассчитываются их волновые числа. Разность волновых чисел делится на п — 1, 1де п — число линий. Момент инерции и межатомное расстояние рассчитывается ио уравпеииям (I, 13) п (I, 4). [c.70]

    Последовательность выполнения работы. 1, Спять спектр комбинационного рассеяния. Возбуждающая е-линия ртути. Входная щель прибора 0,1 мм. Экспозиция 60 —120 мин (чем больше молекулярный вес вещества, тем больше должна быть экспозиция). 2. Снять спектр железа. Щель 0,01 мм. Экспозиция 2 мин. 3. Определить волновые числа всех наблюдаемых линий комбииациоиного рассеяния. 4, Определить частоты колебаний атомов в молекуле. 5. Отнести каждую линию комбинационного рассеяния к определенному колебанию (зарисовать форму колебания и указать частоту). 6. Установить степень вырождения каждого колебания. [c.81]

    Спектры многих элементов очень сложны. Например, в спектре железа насчитывается свыше пяти тысяч линий. Работа с чувствительной аппаратурой показывает, что многие линии в атомных спектрах состоят из нескольких очень близко расположенных линий — являются мультиплетами. Если поместить источник излучения в магнитное поле, то произойдет расщепление одиночных линий — вместо одной линии в спектре появ ится несколько близко расположенных линий [эффект Зеемана). Аналогичное явление наблюдается при помещении источника излучения в электрическое поле (эффект Штарка). [c.10]

    Установить присутствие спектральной линии искомого элемента в спектре стали. Она должна совпадать с указательным штр ихом, нанесенным на планшете выше спектра железа. [c.31]

    Заряженную кассету присоединяют к спектрографу. При необходимости производят съемку миллиметровой шкалы. Затем, не передвигая кассеты и пользуясь ступенчатыми вырезами диафрагмы Гартмана, открывают щель спектрографа и фотографируют спектр железа с временем экспозиции 4, б и 10 с. При искровом возбуждении время экспозиции увеличивают. По окончании фотографирования кассету закрывают и переносят в фотокабину для проявления и фиксирования фотопластинки. [c.109]

    Полная расшифровка спектра и идентификация всех его линий или даже поиск и отождествление последних тиний всех элементов требуют большого труда и затрат времени. Очень часто основной состав анализируемого образца приблизительно известен и требуется установить присутствие или отсутствие нескольких заданных элементов. Такую задачу проще всего решить путем сравнения спектра пробы не со спектром железа, а со спектрами искомых элементов (рис. 3.22). При этом нет необходимости фотографировать спектр чистого элемента при каждом анализе. Достаточно иметь стандартную спектрограмму чистого элемента. Тогда при наличии двойного спектропроектора рабочий спектр можно непосредственно сравнить со стандартным. Если двойного спектропроектора нет, то нужные участки спектрограммы чистого элемента можно либо сфотографировать на фотобумаге, либо зарисовать. Далее этими фотографиями или рисунками можно пользоваться так же, как и обычными планшетами атласа спектра железа. [c.115]

    Полученные спектрограммы рассматривают, пользуясь спек-тропроектором. С помощью вспомогательного спектра железа и атласа спектральных линий находят нужные пары аналитических линий. Для определения хрома, никеля и марганца в сталях используют аналитические пары линий, приведенные в табл. 3.5 (элемент сравнения — железо). [c.121]

    Съемку спектра железа, возбуждаемого в дуге переменного тока с силой тока 5—6 А при расстоянии между электродам Я мм, производят при освещении щели спектрографа трехлин  [c.123]

    Измеряют плотности почернений заданных линий, а также -линии в спектре железа, снятом через ступенчатый ослабитель. По линии железа строят характеристическую кривую и определяют с ее помощью относительную интенсивность группы линий марганца. По почернениям линий алюминия, снятых через ступенчатый ослабитель, строят две характеристические кривые и по ним определяют относительную интенсивность линий. Полученные результаты сравнивают с теоретическимк отношениями интенсивностей, [c.129]


Библиография для Спектр железа: [c.106]   
Смотреть страницы где упоминается термин Спектр железа: [c.43]    [c.58]    [c.67]    [c.71]    [c.80]    [c.290]    [c.27]    [c.112]    [c.112]    [c.119]   
Эмиссионный спектральный анализ Том 2 (1982) -- [ c.0 ]

Оптические спектры атомов (1963) -- [ c.80 , c.282 ]




ПОИСК







© 2025 chem21.info Реклама на сайте