Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Жидкости вязкоэластические

    Таким образом, при малых скоростях удлинения линейная вязкоэластическая жидкость, способная к эластическим деформациям, обладает свойствами ньютоновской жидкости. При высоких скоростях удлинения имеем  [c.174]

    Разумеется, для лучшего понимания процесса литья под давлением необходимо решение задачи фонтанного течения на участке фронта потока. Это трудная задача, особенно для случая неизотермического течения вязкоэластических жидкостей. Поскольку эта задача относится к категории задач со свободными границами, то ее можно решать с помощью либо маркерного метода [33], либо ме- [c.534]


    Учитывая то или иное число членов ряда [уравнение (П.20)], можно получить то или иное приближение реологического уравнения состояния к свойствам реальной среды. Так, если ограничиться только одним членом приближения, то уравнение состояния вырождается в уравнение состояния ньютоновской жидкости. При этом коэффициент приобретает значение ньютоновской вязкости. Приближение второго порядка позволяет предсказать первые вязкоэластические эффекты (нормальные напряжения). Однако оно еще не предсказывает аномалии вязкости. Интересно, что жидкость второго при-76 [c.76]

    VI. 5. ГИДРОДИНАМИЧЕСКАЯ ТЕОРИЯ ВЯЗКОЭЛАСТИЧЕСКИХ ЖИДКОСТЕЙ [c.362]

    Систематическое рассмотрение изотермических течений вязкоэластических жидкостей можно найти в работе [62, с. 136]. Общий вывод, который следует из теоретического анализа, состоит в том, что эластические свойства явно сказываются в переходных режимах течения, когда развивающаяся высокоэластическая [c.91]

    Было показано - что дня большинства неньютоновских жидкостей переход от ламинарного режима течения к турбулентному происходит так же, как и для ньютоновских жидкостей, только при значениях обобщенного числа Рейнольдса выше. 2100. Однако у ряда высокоэластичных неньютоновских жидкостей ламинарное течение наблюдается при значениях обобщенного числа Рейнольдса, превышающих в несколько раз критическое значение 2100. По-видимому, это связано с тем, что возникающие в потоке упругие силы подавляют развитие турбулентности. В настоящее время величина критического числа Рейнольдса для вязкоэластических жидкостей еще не установлена. В этих же работах- доказано, что встречавшиеся раньше указания о существовании преждевременной или структурной турбулентности неверны. [c.60]

    Все полимерные жидкости являются вязкоэластическими системами, обладающими одновременно вязкими и эластическими свойствами [10, И]. [c.55]

    Вязкоэластические свойства зависят от времени действия напряжения, но причины, обуславливающие временную зависимость св ойств, иные, чем у тиксотропных жидкостей. Они связаны с изменением конформаций макромолекул и степени их асимметрии. Вязкоэластическое поведение полимерных жидкостей рассмотрено в работах [10 11 30]. [c.61]

    Различные полимерные материалы, с которыми имеет дело техника,, могут быть изотропными или анизотропными. К последним относятся, в частности, волокнистые вещества, как целлюлоза, полиамидные или полиэфирные волокна. Анизотропия этих веществ создается у природных полимеров в процессе роста растительного или животного организма, в технике — путем соответствующей механической обработки вещества. Изотропные материалы — каучуки, пластмассы и т. д. — могут иметь аморфное, частично кристаллическое или кристаллическое строение. В зависимости от внешних условий — от температуры и давления, а также от временного режима эксплуатации — один и тот же полимер может существовать в трех различных состояниях. При низких температурах аморфные полимерные материалы обладают хрупкостью и не могут претерпевать больших деформаций без разрушения. Это — стеклообразное состояние. При более высоких температурах,, превышающих так называемую температуру стеклования, различную для разных веществ и существенно зависящую от временного режима опыта, полимеры переходят в вязкоэластическое, каучукоподобное состояние. Наконец, при температурах, превышающих так называемую температуру текучести, полимеры приобретают свойства вязкой жидкости, переходят в вязко-текучее состояние. [c.8]


    Переход в вязкотекучее состояние различен для аморфных и кристаллических полимеров. Жидкому состоянию аморфных полимеров предшествует высокоэластическое состояние, которое характеризуется относительно высокой обратимой деформацией системы область перехода 01 высокоэластического состояния к вязкотекучему обычно размыта. Даже при сравнительно большом удалении от этой области расплав полимера обладает отчетливыми вязкоэластическими свойствами, существенно отличаясь от ньютоновских жидкостей. Часто употребляемую для аморфных полимеров характеристику — температуру текучести следует рассматривать как условную, поскольку речь идет об относительно широкой области перехода. В технической литературе используется также [c.72]

    Представления о вязкоэластических свойствах твердых веществ аналогичны представлениям о вязкоэластических свойствах жидкостей, о чем уже говорилось в гл. 14. Так, кажущийся модуль (или деформируемость), графически представленный как функция времени при разных температурах, может быть использован как параметр для экспериментов с контролируемой нагрузкой. Аналогично, истинная и кажущаяся составляющие модуля (обычно называемые, соответственно, эластичностью и потерей модуля) графически представляют как функцию частоты в динамических экспериментах также при различных температурах. Однако многие промышленные приборы работают при единственной фиксированной или приблизительно постоянной частоте в этом случае обычно строят графики зависимости истинной составляющей модуля и отношения кажущейся и истинной составляющих ( тангенс потерь , обозначаемый tgб) от температуры. Большинство этих приборов работает в режиме постепенного подъема температуры. Тс в этом случае определяется при максимальном значении tgб. Следует помнить, что на величину Тс влияет скорость подъема температуры. [c.398]

    В работе были рассмотрены как одномерные, так и двумерные деформации растяжения с целью последующего анализа вытяжки полимерных листов. Основные результаты этого анализа поведения нелинейных вязкоэластических жидкостей сводятся к следующему при 0 О нелинейные вязкоэластические жидкости ведут себя так же, как и линейные жидкости, проявляя при больших временах нагружения свойства ньютоновских жидкостей. При значениях о, отличных от нуля, но меньших, чем критические, зависимость т + от 0 при больших временах нагружения можно представить в виде полинома, в котором в качестве первого члена входит вязкость Трутона. Уайт отмечает, что такой подход эквивалентен приближениям, использованным Денсоном при анализе двухосной деформации полимерных пленок с помощью представлений о неньюто-новской продольной вязкости [57, 58], Подробно эти работы рассмотрены в гл. 15. [c.175]

    Учитывая то или иное число членов ряда уравнения (П1.20), можно получить то или иное приближение реологического уравнения состояния к свойствам реальной среды. Так, если ограничиться только одним членом приближения, то оказывается, что уравнение состояния вырождается в этом случае в уравнение состояния ньютоновской жидкости. При этом коэффициент Яг при- обретает значение ньютоновской вязкости. Приближение второго порядка позволяет предсказать первые вязкоэластические эффекты (нормальные напряжения). Однако оно еще не предсказывает аномалии вязкости. Интересно, что жидкость второго приближения является аналогом разработанной Муни сверхэластической среды [164, 165]. [c.91]

    Паоб5 предложил уравнения, описывающие двумерное течение вязкоэластических жидкостей. Вполне возможно, что со временем, используя быстродействующие счетные машины, удастся получить решение этих уравнений для ряда частных случаев течения через отверстия профилирующих головок. И хотя очевидно, что эти решения будут применимы только к очень ограниченному количеству строго определенных случаев и режимов течения, они могут оказаться весьма полезными при проектировании головок для шприцевания профильных изделий. [c.284]

    Другие указания относительно формы молекул можно получить из макроскопических реологических свойств изучаемых гликопротеинов, а также материалов или физиологических жидкостей, из которых они были выделены. Указания такого рода, несомненно, имеют значение, и ими не следует пренебрегать. В вязкоэластичных жидкостях часто развиваются силы (перпендикулярные к направлению линий напряжения сдвига в растворах), которые можно измерить с помош ью специального прибора — реогонио-метра [244]. Это свойство приводит к макроскопически наблюдаемому эффекту, состояш ему в поднятии цилиндра, вращающегося в жидкости (эффект Вайссенберга). Это и другие вязкоэластические явления, например ните-образование ( Зр1ппЬагкеи ), обнаруживаемые у растворов средней концентрации, указывают на развитие очень дальнодействующих сил напряжения в растворах с градиентами сдвига, что позволяет делать весьма вероятные предположения о сетчатой структуре, т. е. об очень длинных гибких нитевидных молекулах. Вязкоэластические свойства и их отношение к молекулярной структуре рассмотрены Лоджем [1]. Трудно объяснить высокоэластичную природу гелей природных слизей иначе, чем на основании энтропийной эластичности гибких нитевидных молекул [207]. Имеются серьезные доказательства в пользу того, что эти молекулы являются гли-копротеинами. В случае если молекулы гликопротеина, выделенного из этого источника, не являются такими гибкими нитями, необходимо найти иное объяснение рассматриваемым реологическим и эластическим свойствам. [c.84]



Смотреть страницы где упоминается термин Жидкости вязкоэластические: [c.591]   
Явления переноса в водных растворах (1976) -- [ c.104 ]




ПОИСК







© 2025 chem21.info Реклама на сайте