Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Водородное число, методика определения

    Для измерения скорости протекания реакций С. А. Фокин разработал методику определения водородного числа  [c.407]

    Как известно, молекулы белка построены из большого числа аминокислот. Поэтому при изучении структуры белка методом ИК-спектроскопии нельзя просто воспользоваться теми данными, которые были получены при исследовании полипептидов. В работе [137] изучали зависимость конформации от состава аминокислот для тех синтетических полипептидов, которые моделируют составные части белков. Было показано [1895, 1896], что при денатурировании дезоксирибонуклеиновых кислот в их спектрах исчезают полосы при 1645 и 1680 см и вместо них появляются полосы при 1660 и 1690 см- . Первые две полосы соответствуют регулярным водородным связям между звеньями пурина и пиримидина, которые придают прочность двойной спирали. Исследования проводили с использованием растворов в тяжелой воде. В работе [136] обсуждается необходимость спектроскопического изучения биополимеров, находящихся в Н2О и ВгО, поскольку эти жидкости являются их естественными растворителями. Там же рассмотрены соответствующие методики исследования. Изучены конформацион-ные изменения, происходящие при денатурации белков плазмы крови [1314, 1315J. Исследованы колебания пролинового кольца в пoли-L-пpoлинe [257, 259], который является составной частью многих белков. Был сделан вывод, что полосу при 1440 см можно использовать только для определения содержания остатков иминокислот в молекуле полипептида. [c.344]


    Мы полагаем, что наиболее поразительной закономерностью поведения различных систем сплавов является общность эффектов, связанных с характером скольжения. Планарное скольжение может вызываться рядом факторов, включая уменьшение энергии дефектов упаковки, понижение температуры, ближний и дальний порядок, образование кластеров и разрезание выделение дислокациями. Все эти факторы отмечались в разных местах данной главы и в предшествующих обзорах. Хотя корреляция планарного скольжения с КР и водородным охрупчиванием наиболее полно и подробно исследована для аустенитных нержавеющих сталей, она применима и в случае других аустенитных сплавов, алюминиевых сплавов, титановых а- и р-сплавов, а возможно, и в никелевых сплавах. Очевидным исключением служит семейство ферритных и мартенситных сталей, однако в этом случае число работ, в которых исследован характер скольжения, относительно невелико. Ниже обсудим возможность того, что в подобных сплавах тип скольжения не имеет большого значения, но предстоящие исследования этих материалов все же должны включать определение типа скольжения, например, с помощью сравнительно простой методики линии скольжения [201]. Это позволит установить, распространяется ли отмеченная корреляция на о. ц. к. стали. Часто высказываемое мнение о том, что в железе (и, как следствие, в стали) скольжение всегда носит сильно непланарный характер,— ошибочно. Например, понижение температуры делает скольжение в чистом железе заметно более планарным и [c.120]

    Методика определения. Растворяют отвешенную на аналитических весах навеску анализируемой смеси, приготавливают исходный раствор с концентрацией компонентов порядка 0,01—0,02 н. В электролитическую ячейку переносят 50 мл приготовленного раствора и проводят кондуктометрическое титрование 0,1 н. раствором комплексона 1П. Сначала в реакцию вступают ионы цинка. Электропроводность раствора до первой точки эквивалентности сильно увеличивается за счет накопления высокоподвижных водородных ионов и ионов натрия. После точки эквивалентности электропроводность раствора падает, так как снижается концентрация водородных ионов, взаимодействующих с Н2 2 -ионами. Когда электропроводность раствора начинает понижаться, добавляют несколько порций титранта и заканчивают титрование. После этого добавляют 20 мл борно-щелочного буферного раствора (pH = 8) и проводят второе титрование. При добавлении буферной смеси избыток комплексона П1, находящийся в растворе в результате первого титрования, вступает в реакцию с катионами магния. Поэтому при втором титровании дотитровывают оставшиеся в растворе ионы магния. Электропроводность раствора при титровании до второй точки эквивалентности мало изменяется, что объясняется тем, что в растворе уменьшается концентрация борат-ионов, но увеличивается концентрация ионов натрия. При избытке титранта электропроводность сильно увеличивается. Количество миллилитров комплексона П1, вступившего в реакцию с РЬ(ЫОз)г, определяют по участку кривой до первого излома. Число миллилитров комплексона П1, взаимодействующего с MgS04, находят по участку кривой, соответствующему избытку титранта при первом титровании и участку кривой до излома при втором титровании. Расчеты проводят, как описано в гл. VHI, 6. [c.201]


    При оценке этого материала обращало на себя внимание то, что данные, полученные различными исследователями для одного и того же вещества, имея сравнительно высокую относительную сходимость (0,02—0,05%), значительно разнились между собой. Это в некоторой мере могло объясняться недостаточной чистотой сжигаемых объектов, но, по-видимому, в основном являлось следствием несовершенства методики измерения. Основным методическим затруднением являлось то, что в то время измерение теплот сгорания не могло еще проводиться сравнительным методом с использованием эталонного вещества (I, стр. 214—217). Это значительно усложняло определение теплового значения калориметрической системы. Аддитивный расчет этой величины не мог дать точных результатов вследствие сложности калориметрической системы и неопределенности ее границ. Кроме того, при аддитивном расчете теплового значения причиной расхождения данных отдельных исследователей являлись еще и неизбежные ошибки в измерении температуры. В работах того времени авторы пользовались для измерения температуры ртутно-стеклянными термометрами и должны были вводить в измерения большое число поправок, чтобы выразить изменение температуры в градусах принятой в то время водородной шкалы. Введение этих часто не вполне достоверных поправок могло внести существенные ошибки в измерение температуры. Определение теплового значения методом ввода теплоты электрическим током также не было доступно в то время многим лабораториям из-за отсутствия достаточно точных электроизмерительных приборов и приборов измерения времени. Это приводило к тому, что многие авторы часто допускали существенные систематические ошибки при определении теплового значения своих калориметров. Наконец, сама техника проведения калориметрического опыта не была еще в то время столь совершенной, чтобы обеспечить получение результатов высокой точности. Выходом из создавшегося положения явилось использование всеми авторами для оцределения теплового значения своих калориметров эталонного вещества, т. е. вещества с точно определенной теплотой сгорания. Наличие такого вещества позволило измерять теплоты сгорания остальных веществ сравнительным методом, что значительно повысило бы точность измерений. Мысль о целесообразности введения такого эталона была высказана Э. Фишером еще в 1909 г. и поддержана многими авторитетными термохимиками, в частности В. В. Свентославским [2], однако для ее осуществления предстояло провести очень большую работу. [c.16]

    Безусловно, методика вычисления энергии по интегральным интенсивностям без температурных измерений проще и не требует проведения большого числа опытов, однако в случае слабых водородных связей необходима дополнительная информация о применимости такого рода соотношений. Определение AH существенно упрощается, если предполагается, что сдвиг полосы дн пропорционален энергии водородной связи [15]  [c.208]

    В двухцепочечных нуклеиновых кислотах обмен протонов, участвующих в образовании водородных связей, значительно облегчается при действии агента, который разрывает водородные связи. Резюмируя, можно сказать, что протон, потенциально способный к быстрому обмену, обменивается плохо, если он образует водородную связь. Этот факт можно использовать для определения числа водородных связей, эффективности различных денатурирующих агентов или динамического состояния макромолекулы. При первом применении этой методики рассматривали только дейтериевый обмен, потому что была недоступна. Обнару- [c.522]

    Методика определения. Навеску определяемой соли, рассчитанную для приготовления приблизительно 0,1 н. раствора, отвешивают на аналитических весах, переносят в мерную колбу и растворяют в воде. Пипеткой отбирают аликвотную часть раствора и переносят в ячейку для титрования. Проводят кондуктометрическое титрование 1,0 и. раствором NaOH. При титровании гидрохлорида гидразина электропроводность раствора до точки эквивалентности линейно понижается. Характер кривой титрования гидрохлорида карбамилгидразина на этом участке несколько отличается. Так как основные свойства карбамилгидразина выражены очень слабо, соль подвергается гидролизу и раствор в начале титрования содержит довольно высокую концентрацию водородных ионов. Поэтому в начале титрования электропроводность раствора сильно понижается, так как уменьшается концентрация водородных ионов. При дальнейшем титровании гидролиз соли подавляется и электропроводность понижается менее сильно. Понижение электропроводности раствора до точки эквивалентности свидетельствует о том, что подвижности катионов титруемых солей выше подвижности катионов натрия, заменяющих их в процессе титрования. После точки эквивалентности электропроводность сильно увеличивается от избытка щелочи. Находят число миллилитров щелочи, прореагировавшей с солями (расчеты см. гл. VHI, 6). [c.157]



Смотреть страницы где упоминается термин Водородное число, методика определения: [c.524]    [c.277]    [c.54]    [c.291]   
Методы эксперимента в органической химии Часть 3 (1950) -- [ c.82 ]




ПОИСК





Смотрите так же термины и статьи:

Водородное число



© 2025 chem21.info Реклама на сайте