Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Метионин переаминирование

    Опыты показали, что малобелковая диета приводит к резкому уменьшению интенсивности дезаминирования в печени и переаминирования в печени, почках и мышцах. При этом выяснилось, что нарушения дезаминирования связаны с разрушением апофермента (белковой части) оксидаз аминокислот, в то время как концентрация кофермента была вполне достаточной. Оказалось далее, что при белковом голодании нарушаются многие другие ферментные системы (окисляющие фенилаланин, тирозин, метионин и гистидин), в том числе и ферментная система синтеза мочевины. [c.370]


    Метионин включается в белки и как таковой, и в виде N-формилме-тионина в качестве N-концевого остатка бактериальных белков (рис. 14-9, стадии а и б). Как в клетках животных, так и в клетках растений Метионин может лодвергаться переаминированию в соответствую-Щую-кетокислоту (стадия в), но в количественном отношении эта реакция едва ли имеет важное значение. Главный путь превращения метионина связан с его превращением в S-аденозилметионин (SAM, рис. 14-9, стадия г). Эта реакция уже обсуждалась (гл. 11, разд. Б,2) была рассмотрена (гл. 7, разд. В, 2) и функция SAM в процессе трансметилирования (стадия д). Продукт трансмет1у1ирования S-аденозилгомоцис--теин превращается в гомоцистеин путем необычной гидролитической реакции отщепления аденозина (стадия е) >. Гомоцистеин может быть снова превращен в метионин, как показано штриховой линией на рис. 14-9, а также в уравнении (8-85). Другой важный путь метаболизма гомоцистеина связан с превращением в цистеин (рис. 14-9, стадии ж и з). Эта последовательность реакций обсуждается в разд. Ж- ДрУ гим продуктом на этом пути является а-кетобутират, который доступен окислительному декарбоксилированию с образованием пропионил-СоЛ и его дальнейшим метаболизмом или может превращаться в изолейцин (рис. 14-10). [c.111]

    Свободные аминокислоты нужны в живом организме и для выполнения специфических задач. Так, глутаминовая кислота выполняет особую функцию переноса при переаминировании, метионин — при переметилировании. Главными продуктами разложения аминокислот являются аммиак, мочевина и мочевая кислота. Восполнение потерь аминокислот происходит в основном в результате расщепления белков, а также переаминирования а-кетокислот и взаимных превращений аминокислот. [c.10]

    При отщеплении метильной группы из метионина образуется гомоцистеин. Гомоцистеин может превращаться в цистеин или подвергаться десульфгидрированию с образованием НгЗ, КНз и а-кето масляной кислоты, а-кетомасляная кислота, вступая в реакцию переаминирования с глутаминовой кислотой, [c.253]

    Кроме того, аминоазот других аминокислот, например, валина, лейцина, изолейцина, глицина и метионина, может путем переаминирования переходить на кетоглютаровую кислоту, давая глютаминовую кислоту. Таким образом, доля азота аминокислот, подвергающаяся обмену через указанную систему, еще более увеличивается. [c.354]

    В тканях высших животных D-аминокислоты не найдены если они и присутствуют в этих тканях, то их концентрации, очевидно, невелики. Тем не менее животные способны усваивать D-изомеры некоторых аминокислот, и иногда в такой степени, что последние могут обеспечивать рост животных взамен соответствующих L-изомеров. Усвоение D-аминокислот зависит в основном от скорости их превращения в L-изомеры. Такая инверсия может осуществляться по крайней мере двумя путями 1) окислительное превращение D-изомера в аналогичную а-кето-кислоту и последующее специфическое для L-конфигурации реаминирование (переаминирование, стр. 210) и 2) прямая рацемизация— реакция, которую до сих пор наблюдали лишь у бактерий (стр. 239). По-видимому, наличие оксидазы D-аминокислот является необходимым, но не всегда достаточным условием использования D-аминокислот в организме животных. Как показывает табл. 15, D-фенилаланин и D-метионин усваиваются мышью, крысой и человеком. Однако имеются данные о том, что у человека D-фенилаланин не может полностью покрывать потребность в L-изомере, хотя эквивалентное количество DL-фенилаланина достаточно для поддержания азотистого равновесия [46]. [c.135]


    В исследованиях Торна и его сотрудников [311—314], проведенных относительно недавно, было убедительно доказано участие D-аминокислот в реакциях ферментативного переаминирования у некоторых бактерий, синтезирующих внеклеточные полиглутаминовые кислоты с преобладанием D-конфигурации. Торн обнаружил, что бесклеточные препараты из Ba illus subti-//tS катализируют образование D-глутаминовой кислоты, D-аспарагиновой кислоты и некоторых других D-аминокислот (например, D-метионина, D-серина) из D-аланина и соответствующих а-кетокислот. Свежеприготовленные ферментные экстракты осуществляли также реакцию переаминирования между L-аспарагиновой и а-кетоглутаровой кислотами в этом случае образующаяся глутаминовая кислота имела L-конфигурацию, Если экстракты хранить в течение некоторого времени и затем подвергнуть их диализу, то активность Ь-трансаминазы (при добавлении пиридоксальфосфата в качестве кофермента) значительно превышает активность L-трансаминазы. [c.228]

    В результате фракционирования экстрактов сульфатом аммония были получены препараты, содержащие только D-транс-аминазу. Образование D-аланина путем переаминирования между пировиноградной кислотой и D-изомерами фенилаланина, триптофана, метионина, гистидина и лейцина было обнаружено в опытах с ферментными препаратами из Ba illus anthra is. В этой ферментной системе пировиноградная кислота не может быть заменена а-кетоглутаровой кислотой. Из D-аминокислот, испытанных в эксперименте, с а-кетоглутаратом реагировал только D-аланин. Из L-аминокислот с пируватом взаимодействовала только L-глутаминовая кислота. [c.228]

    Широкое распространение реакций переаминирования и участие в йих многочисленных аминокислот свидетельствуют о существенном значении этих реакций в обмене веществ. Роль реакций переаминирования в процессах окислительного дезаминирования L-аминокислот и мочевинообразования у млекопитающих рассмотрена выше (стр. 171). Возможность замещения незаменимых а-аминокислот в пищевом рационе растущих животных соответствующими кетокислотами определяется наличием в организме активных трансаминаз (стр. 137). Сравнительно недавно было показано, что молодые крысы растут примерно с одинаковой скоростью при кормлении синтетической диетой, содержащей 10 незаменимых аминокислот и глутаминовую кислоту, и рационом, в котором 5 незаменимых аминокислот (лейцин, изолейцин, валин, фенилаланин и метионин) заменены соответствующими кетокислотами и эквивалентным источником азота [321]. Эти данные свидетельствуют о том, что общая активность трансаминаз в организме крысы очень велика поскольку для синтеза белков необходимо одновременное присутствие всех аминокислот, приведенные выше факты говорят о том, что указанные пять а-кетокислот быстро подвергаются переаминированию. [c.233]

    Метионин окисляется обычными аминокислотными оксидазами с образованием а-кето- -метилтиомасляной кислоты эта реакция возможна для обоих изомеров метионина (стр. 186). Окисление D-метионина с последующим превращением образующейся а-кетокислоты в L-метионин путем переаминирования лежит, вероятно, в основе способности организма человека и крысы использовать D-метионин для роста. а-Кето- -метилтио-масляная кислота может распадаться в организме с образованием метилмеркаптана ([543, 544], см. ниже). [c.375]

    Другая бактериальная система, превращающая метионин в а-аминомасляную кислоту и метилмеркаптан, найдена у Е. соН [548] для ее действия необходимо присутствие АТФ и пиридоксальфосфата. Механизм этого превращения может быть тем же, что и у Pseudomonas, причем а-аминомасляная кислота образуется в результате переаминирования. [c.376]

    Быстрый круговорот азота у человека, животных и растений был также подтвержден Шенгеймером при помощи дейтерия. При введении в организм мыши тяжелой воды уже через три дня все аминокислоты, опять-таки кроме лизина, содержали дейтерий в связях С—И, куда он не мог входить путем простого изотопного обмена с водой. В этих исследованиях также было найдено, что дейтерий особенно быстро появляется в глютаминовой кислоте. За десять дней в ней замена водорода дейтерием достигает 40% от равномерного распределения, а в глютаминовой кислоте печени этот процесс идет еще гораздо быстрее. Внедрение дейтерия из тяжелой воды в аминокислоты легко понять в свете рассмотренного на стр. 378 механизма энзиматического переаминирования, по которому весь а-водород аминокислоты должен заместиться водородом из воды. Из скорости усвоения аминокислотами и протеинами вводимого дейтерия и тяжелого азота можно было вычислить, что в печени крыс половина белков обменивается за 5—7 дней, в белках кровяной плазмы собак за 1—2 недели, но гораздо медленнее в белках мышц. Азобактерии уже за 15 мин. обменивают 8% азота глютаминовой кислоты в своих белках на меченый азот из питательной среды. При кормлении метионином, меченным радиоактивной серой, последняя также вскоре появляется в ряде белков тканей и органов, что также подтверждает быстрое обновление аминокислот. [c.496]

    Большой интерес представляет превращение в организме метионина. Он, как и другие аминокислоты, подвергается реакциям переаминирования, но наряду с этим участвует во многих процессах благодаря наличию метильной группы. В тканях организма имеются ферменты метилферазы, катализирующие перенесение метильной группы от метионина на другие вещества. Отщепление метильной группы от метионина сопровождается образованием гомоцистеина (гомолог цистеина, имеюцдий на одну СНг-группу больше, чем цистеин). [c.381]


    Некоторым витаминам принадлежит особо важная роль в азотистом обмене. Подвергаясь в организме фосфорилированию, а в некоторых случаях более сложным превращениям, они дают начало образованию небелковых компонентов ферментов, катализирующих реакции превращения аминокислот. Витамин Ва (флавин) является составной частью кофермента оксидазы О- и .-аминокислот и аминооксидаз. Пантотеновая кислота входит в состав кофермента ацилирования, играющего важную роль в обмене безазотистых соединений, образующихся из аминокислот (а-кетокислот и др.) и ряда азотистых веществ. Фолиевая кислота и ее производные участвуют в процессах, приводящих к использованию метильных групп метионина, формильных, оксиметильных групп (остатков муравьиной кислоты и формальдегида), возникающих при превращении ряда аминокислот (серина, глицина, гистидина, триптофана). Особо важное место в азотистом обмене занимает витамин В( (пиридоксаль). В виде своего фосфорного эфира Вд служит коферментом ряда ферментов, участвующих в превращениях аминокислот. В частности, ферменты, катализирующие переаминирование аминокислот, содержат в виде кофермента пиридоксальфосфат. Авитаминоз В сопровождается, особенно у микроорганизмов, ослаблением и даже прекращением реакций переаминирования. Пиридоксальфосфат является также коферментом декарбоксилаз аминокислот. Вместе с этим тшридоксальфосфат входит (в виде кофермента) в состав ряда других ферментов, участвующих в превращениях определенных аминокислот (триптофана, серина, серусодержащих аминокислот). [c.433]

    Определенный вклад в глюконеогенез вносят и другие аминокислоты, поскольку после дезаминирования или переаминирования их углеродный скелет полностью или частично включается в цикл. Примерами служат аланин, цистеин, глицин,, гидрок-сипролин, серии, треонин и триптофан, из которых образуется пируват аргинин, гистидин, глутамин и пролин, из которых образуется глутамат и далее а-кетоглутарат изолейцин, метионин и валин, из которых образуется сукцинил-СоА из тирозина и фенилаланина образуется фумарат (рис. 17.7). Вещества, образующие пируват, либо полностью окисляются до СО, по пируватдегидрогеназному пути, ведущему к образованию ацетил-СоА, либо следуют по пути глюконеогенеза с образованием оксалоацетата в результате карбоксилирования. [c.178]


Смотреть страницы где упоминается термин Метионин переаминирование: [c.248]    [c.138]    [c.223]    [c.239]    [c.44]    [c.320]   
Биохимия аминокислот (1961) -- [ c.218 , c.228 ]




ПОИСК





Смотрите так же термины и статьи:

Метионин



© 2025 chem21.info Реклама на сайте