Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Первичный фотохимический процесс окисление воды

    При отсутствии решающих аргументов в пользу прямой связи первичного фотохимического процесса с двуокисью углерода или водой представляется полезным привести также менее специальную схему. В этой схеме восстановление двуокиси углерода и окисление воды относятся к вторичным каталитическим реакциям пер- [c.165]

    Однако возможно еще более простое истолкование тех же самых фактов, если допустить, как это мы делали выше, что первичный фотохимический процесс состоит в окис.тении промежуточного восстановителя Н7 и что во время нормального фотосинтеза окисленный продукт Z получает вновь водород от воды при нефотохимической реакции. [c.175]


    Аналогичную схему можно построить, предиоложив дисмутацию энергии на окислительной стороне первичного фотохимического процесса таким образом, перегруппировка четырех пар первичных продуктов должна дать возможность четырем другим окисленным продуктам окислить воду по реакции (7.14г). [c.171]

    Ван Ниль и Гаффрон считают, что окисление воды представляет собой одну (или даже единственную) из первичных фотохимических реакций обычного фотосинтеза (как в схеме на фиг. 16). Таким об-pa30i[, предположение о неучастии восстановителей-заменителей воды в фотохимическом процессе не исключает логического вывода, что и в бактериальном фотосинтезе первичным фотохимическим процессом является окисление воды. Отсюда отсутствие выделения кислорода на свету пурпурными бактериями можно объяснить двояким образом. Согласно одной гипотезе, предложенной Гаффроном, промелсуточный продукт окисления воды ОН может восстанавливаться у бактерий восстановите.мми-заменителями — водородом, сероводородом и т. д., так как эти организмы содержат активную гидрогеназную систему и не содержат энзима Eq, выделяющего кислород. Вторая гипотеза, предложенная ван Нилем, предполагает, что первичный продукт, получающийся при окислении воды у бактерий ОН , несколько отличен от продукта, получающегося у зеленых растений ОН - , и поэтому он не может превратиться в [c.174]

    В главе VII говорилось о том, что один, и, может быть, единственный, первичный фотохимический процесс фотосинтеза заключается в прямом окислении воды или в окислении промежуточного восстановителя HZ (который затем окисляет воду) промежуточным окислителем X (который затем восстанавливает двуокись углерода). В главах VIII и IX мы рассматривали каталитический механизм восстановления двуокиси углерода первичным восстановленным продуктом НХ. Теперь нам предстоит заняться рассмотрением каталитического механизма окисления воды , т. е. выделения кислорода из первичного продукта окисления , обозначенного в г.таве VII через ОН или Z. [c.290]

    Вместе с ван Нилем и другими исследователями мы объясняли разложение или окисление воды как вероятный первичный фотохимический процесс в фотосинтезе (глава УП). Концепция Хэнсона хлорофилл-водного комплекса, очевидно, входит в рамки этой теории. Впрочем, гигроскопичность является столь общим свойством многих органических соединений, что гигроскопичность хлорофилла вряд ли можно считать существенным аргументом в пользу именно этой теории фотосинтеза. Если гигроскопичность хлорофилла в клетке не выше гигроскопичности твердого хлорофилла 1п т11го, то и тогда при комнатной температуре будет гидратировано меньше половины молекул хлорофилла в хлоропласте. Если это так, то возникает вопрос — каким образом световые кванты, поглощаемые всеми молекулами хлорофилла, могут быть использованы для фотосинтеза Это замечание не следует рассматривать как аргумент против [c.455]


    В присутствии фенилуретана скорость восстановления нитратов на свету не уменьшается, но вместо кислорода выделяется чистая двуокись углерода (как в темноте). Можно полагать, что это — аргумент в пользу двухступенчатого механизма восстановления нитратов. Первая ступень — стимулированное светом нитратное дыхание — может быть так же нечувствительной к уретану, как соответственная темновая реакция, а вторая ступень — угнетаемый уретаном обычный фотосинтез. Однако действие уретана объяснимо также и на основе прямого нитратного фотосинтеза . Для этого необходимо допустить, что уретан тормозит последнюю стадию реакции (19.2)—выделение кислорода, направляя, таким образом, процесс по второму возможному пути, где первичный фотохимический продукт окисления, обозначаемый ОН или Z (глава VII), восстанавливается налижными органическими водородными донорами вместо того, чтобы выделять кислород из воды. Другими словами, уретан может превращать нитратный фотосинтез в нитратное фотоокисдение совершенно таким же образом, как он превращает обычный фотосинтез в обычное фотоокиеление (см. опыты Ноака, описалные на стр. 535). [c.547]

    Фотохимическое окисление и нефотохнинческое восстановление хлорофилла. Вейгерт [66] считает, что первичный фотохимический процесс в фотосиптезе — передача электронов от хлорофилла Е воде, за которой следует окисление воды окисленным хлорофиллом и восстановление двуокиси углерода восстановленной водой  [c.560]

    Мы можем, например, считать скорость фотосинтеза пропорциональной концентрации первичного субстрата окисления, такого, как гипотетическая связанная вода A HgO или, в более общем виде, A HR вместо концентрации первичного субстрата восстановления A Og, как мы делали до сих пор. Однако мы воздерживаемся от детального обсуждения этих возможностей, потому что для зеленых растений еще не имеется положительного доказательства того, что темновая реакция гидратации действительно необходима, чтобы сделать воду доступной для фотохимического процесса. Даже если она и требуется, то изобилие воды в клетках делает эту реакцию практически мгновенной. Известно, что при фотосинтезе пурпурных бактерий происходят предварительные превращения восстановителей, но еще не имеется определенного доказательства, что эти превращения должны рассматриваться как подготовительные реакции (т. е. реакции, обеспечивающие фотохимический процесс субстратом окисления), а не как завершающие реакции, удаляющие первичные продукты, образующиеся при фотохимическом окислении воды (ко второй альтернативе склоняются Ван-Ниль, Гаффрон и Франк см. т. I, стр. 174). Обычно в большинстве дискуссий по кинетике фотосинтеза довольно детально рассматривают подготовительные процессы на восстановительной стороне и в значительной мере пренебрегают аналогичными процессами на окислительной стороне первичного фотохимического процесса. Тем не менее следует помнить, что подобный подход не является оправданным и объясняется исключительно нашей неспособностью изучать судьбу воды перед ее окислением при фотосинтезе и недостаточным знанием начальных превращений водорода и других восстановителей, используемых бактериями. [c.450]

    Некоторые из этих реакций в настоящее время изучают с помощью радиоактивных изотопов. Нас интересует судьба трех видов атомов — водорода, углерода и кислорода. Тяжелый , нерадиоактивный водород, дейтерий (Н ), имелся в распоряжении исследователей еще до войны. Слаборадиоактивный тритий (Н ) не всегда бывает легко получить и сейчас. Из изотопов углерода пользуются быстро распадающимся С , медленно распадающимся и стабильным (нерадиоактивным) С . Наиболее широко используется С , который можно теперь легко получать из атомного котла в Окридже. К нашему великому сожалению, радиоактивные изотопы кислорода неизвестны. Единственным средством изучения судьбы этого важного элемента служит применение стабильного изотопа О . Меченый углерод — удобное средство для изучения восстановления углекислоты до углевода. Меченый кислород можно с успехом использовать для изучения окисления воды до кислорода. Меченый водород может оказать помощь в выяснении тех процессов, которые символизируются мостиком между двумя группами реакций, в том числе и первичного фотохимического процесса. [c.49]

    Хлорофилл — вещество, ответственное за зеленый цвет в растениях, является комплексным соединением, в котором четыре пиррольных цикла связаны в виде комплекса с магнием. Основное значение хлорофилла в природе — его участие в процессе фотосинтеза, в преобразовании световой энергии в химическую [8]. Хотя механизм фотохимического превращения двуокиси углерода и воды в углеводы и кислород еще не совсем ясен, первичной реакцией должно быть фотовозбуждение хлорофилла с последующим использованием этой энергии для окисления воды и восстановления двуокиси углерода. Известны два хлорофилла а и 6 (XII, XIII), которые мало отличаются по структуре, причем главным образом ответствен за фотосинтез первый из них. Полный синтез XII и XIII был осуществлен в 1960 г. [9] (схема 4). [c.318]


    Фотохимическое восстановление хлорофилла, его аналогов и производных органическими восстановителями (аскорбиновой кислотой, цистеином и др.) с образованием продуктов, имеющих повышенную энергию за счет поглощенных квантов света, обнаружил А. А. Красновский [1349] спектральным путем и по изменению окислительно-восстановительного потенциала. В темноте происходит без участия кислорода обратный процесс окисления, возвращающий систему в теормодинамически устойчивое состояние. А. А. Красновский предполагает, что фотовосстановление хлорофилла происходит путем перехода на его бирадикал - X электрона от восстановителя НА, после чего последний уже без участия света передает протон окислителю В. Аналогично должны проходить первые стадии фотосинтеза в растениях, где НА — вода или первичные продукты ее восстановления и В — восстанавливающаяся Og или первичные продукты ее фиксации. Таким образом, перенос водорода совершается двумя сопряженными процессами переносом электрона к хлорофиллу и переносом протона к нему же или, что более вероятно, непосредственно к дальнейшим промежуточным продуктам цепи реакций, ведущих к восстановлению СОо. Упрощенная схема участия хлорофилла в фотосинтезе согласно этим представлениям имеет вид  [c.476]

    При описании фотохимического разложения воды мы начади с прямого действия ультрафиолетового света теперь мы также начнем с несенсибидизированного фотохимического разложения двуокиси углерода ультрафиолетовым светом. Спектр молекулы СОд состоит из дискретных полос от 200 до 103 м >-. Таким образом, первичным процессом будет скорее электронное возбуждение, чем фотохимическое разложение. Фиг. 2 показывает кривые экстинкции ионов СО — и НСО " в воде. В этом случае первичный процесс, вероятно, состоит в переносе одного электрона от иона к воде, т. е. в окислении карбоната и восстановлении воды согласно реакции [c.86]


Смотреть страницы где упоминается термин Первичный фотохимический процесс окисление воды: [c.361]    [c.176]   
Фотосинтез 1951 (1951) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Окисление воды как первичный процесс

Фотохимический процесс



© 2024 chem21.info Реклама на сайте