Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Молекулярно-массовое распределение влияние на течение

    Для выяснения факторов, влияющих на характер кривой растворимости целлюлозы при эмульсионном ксантогенировании, было исследовано ксантогенирование образцов целлюлозы, отличающихся по средней степени полимеризации (СП), молекулярно-массовому распределению (ММР) и структуре [36]. На рис. 2.3 показаны кривые растворимости целлюлоз с различным фракционным составом и различной средней степенью полимеризации, полученных из одного и того же образца исходной сульфитной древесной целлюлозы (путем предсозревания в течение 2.5 и 10 ч при 323 К). Кривая I относится к целлюлозе, имеющей среднюю степень полимеризации 840 и сохраняющей высокомолекулярные фракции, кривая 2 — к целлюлозе с СП=440, не содержащей высокомолекулярной части. Как видно из рис. 2.3, кривые растворимости для целлюлоз с различными СП и фракционным составом отличаются несколько друг от друга. Однако характер кривой растворимости для этих целлюлоз существенно не изменяется. Таким образом, не ММ или ММР, а структура оказывает главное влияние на доступность. [c.35]


    В литературе описаны также некоторые дополнительные методы исследования влияния деформации сдвига на механодеструкцию, которые могут быть отнесены к капиллярному течению. Кавальери и Розенберг [128, 129] исследовали сдвиговую деструкцию ДНК в стеклянном распылителе такого же типа, как и используемый для подготовки хроматографической бумаги. Они установили, что деструкция полимера зависит от геометрических размеров и формы распылителя. В их работах изучалось также влияние молекулярной массы ДНК, концентрации ее соли, температуры, скорости жидкости и давления воздуха на скорость деструкции. Наиболее эффективным оказалось воздействие давления чем выше давление, тем больше скорость сдвига и ниже конечная молекулярная масса ДНК. Авторы смогли достичь снижения молекулярной массы и сужения молекулярно-массового распределения ДНК при незначительной денатурации. Концентрация раствора не оказывала существенного влияния на деструкцию. [c.424]

    Влияние молекулярно-массового распределения на нормальные напряжения. Вопрос о влиянии молекулярно-массового распределения на нормальные напряжения, развивающиеся при установившемся сдвиговом течении полимерных систем, как и в случае вязкости, сводится к выбору такой усредненной молекулярной массы М, для которой зависимость Щ должна совпадать с зависимостью 0 М), измеренной для монодисперсных полимеров. Известно очень мало экспериментальных данных относительно влияния молекулярно-массового распределения на нормальные напряжения. Поэтому какие-либо окончательные выводы делать здесь было бы преждевременным. Однако существующие экспериментальные данные Згказывают на более сильное, чем в отношении вязкости, влияние высших моментов молекулярно-массового распределения на величину 5о. Во всяком случае использование в качестве аргумента зависимости среднемассовой молекулярной массы, с помощью которой удачно описываются экспериментальные данные по вязкостным свойствам полимеров с произвольными молекулярно-массовыми распределениями, оказывается для нормальных напряжений неудовлетворительным. Так, для полидиметилсилоксанов с различными молекулярно-массовыми распределениями начальный коэффициент нормальных напряжений оказывается однозначной функцией произведения двух средних молекулярных масс — среднемассовой, и 2-средней (рис. 4.23). Но неизвестно, будет ли этот аргумент пригоден для [c.365]

    Характер зависимости У(. от мол. массы полимера определяется влиянием этой последней на вязкость Тс от мол. массы практически не зависит. Более сложно влияние на критич. параметры молекулярно-массового распределения. Для гибкоцепного полимера достаточно ВЫСОКО мол. массы с узким распределением характерен очень резкий переход из области вязкотекучего в вынужденное высокоэластич. состояние. Такой переход приводит к возникновению скачка объемного расхода при Т . и искажениям струи, носящим, как правило, периодич. характер. По моро расширения молекулярномассового распределения резкость перехода в вынужденное высокоэластич. состояние ослабляется, и Т. в. проявляется в широкой области скоростей сдвига. Для полимеров с достаточно широким распределением переход от течения к скольжению вообще не наблюдается, материал ведет себя как типичная аномальновязкая жидкость, а Т. в. проявляется лишь в нерегулярных дефектах струи. Автоколебательный режим выдавливания в этом случае оказывается невозможным. Условия возникновения Т. в. при переработке полимеров, приготовленных смешением фракций существенно [c.333]


    В отличие от ионных кристаллов [389] и низкомолекулярных жидкостей [390-392] для высокомолекулярных соединений характерны заметные различия в свойствах объема, граничного и переходного слоев, когда аномалии вязкости наблюдали на расстоянии до 500 мкм от твердой поверхности [393]. Развитие инструментальной техники позволяет выявить ряд более тонких деталей. Например, в случае жидких полидиметилсилоксанов с вязкостью (0,05-г"20,0)-м /с и узким молекулярно-массовым распределением, нанесенных на полированную стальную подложку, резкое снижение вязкости наблюдается в слоях, расположенных на расстоянии 0,2-0,3 мкм от твердой поверхности. В слоях толщиной до 1,5-2,0 мкм вязкость на 30-40% превышает объемное значение [394]. Подобные закономерности связывают с жесткостью макромолекул и межмолекулярным взаимодействием между ними, различая не менее трех профилей скоростей течения полимерной жидкости одного состава в зависимости от величины энергии ее когезии [395]. Отсюда ясно, что роль твердого субстрата зависит от молекулярной массы полимера. Коэн и Рейч методом двойного лучепреломления недавно оценили роль этого фактора [396]. Для низкомолекулярного полистирола (М = 800) упорядочивающее влияние стеклянной поверхности простирается не далее 1 мкм, тогда как с ростом молекулярной массы до 10 это расстояние увеличивается не менее, чем на порядок. Исследование аномалий вязкости растворов полимеров, протекающих через пористые среды, позволило показать, что влияние твердой поверхности распространяется на расстояние, меньшее характеристического линейного размера слоя [397]. [c.90]

    Много исследований было выполнено с целью установления применимости механизма пластикации натурального каучука к синтетическим каучукам. Бхатнагар и Бамерджи [77] сообщали об изменении вязкости и молекулярной массы при пластикации бутадиен-стирольных каучуков. При пластикации, вследствие превращения разветвленных молекул в линейные, возрастает растворимость каучука. Однако пластикация при высоких температурах сопровождается одновременным протеканием реакций деструкции и поперечного сшивания [390]. Кроме того, сообщалось о влиянии на некоторые бутадиен-стирольные каучуки пластикации, проведенной либо на открытых вальцах, либо в смесителе Бенбери [45, 391, 1127, 1206], а также об эффективности различных способов деструкции при использовании вальцев различных размеров [863]. Было показано, что, в противоположность НК [336], первоначальный пик на кривой молекулярно-массового распределения смещался незначительно, хотя имело место сужение ММР в связи с разрывом молекул с наиболее высокой молекулярной массой [45]. Для этиленпропиленовых терполимеров [44, 45] было установлено, что использование акцептора свободных радикалов при холодной пластикации приводит к механическому разрушению С—С-связей главной цепи. В течение некоторого времени ММР сужается, так как в первую очередь разрушаются более длинные молекулы. [c.344]


Смотреть страницы где упоминается термин Молекулярно-массовое распределение влияние на течение: [c.162]    [c.366]   
Физико-химия полимеров 1978 (1978) -- [ c.226 , c.227 ]




ПОИСК





Смотрите так же термины и статьи:

Массовая

Молекулярно-массовое распределение

Молекулярный вес распределение

Распределение при течении



© 2024 chem21.info Реклама на сайте