Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Коллоидные системы необратимые

    Коллоидные растворы классифицируют по способности сухого остатка, полученного при осторожном выпаривании, растворяться в чистой дисперсионной среде. Системы, сухой остаток которых не способен самопроизвольно диспергироваться в дисперсионной среде, называются необратимыми (например, лиозоли металлов, гидрозоли иодида серебра и др.). Обратимыми коллоидными системами называются системы, у которых сухой остаток при соприкосновении со средой обычно сначала набухает, а затем самопроизвольно растворяется и образует прежнюю дисперсию (например, раствор желатины в воде или каучука в бензоле). Обратимость или необратимость коллоидной системы определяется отношением дисперсной фазы к дисперсионной среде. Дисперсная фаза обратимых коллоидов молекулярно взаимодействует с дисперсионной средой и поэтому способна в ней растворяться. По этому признаку дисперсные системы Делят на две основные группы лиофильные (обратимые) системы (истинно лиофильные и поверхност-но-лиофильные) и лиофобные (необратимые) системы. Если же дисперсионной средой системы является вода, эти два класса можно назвать соответственно гидрофильными и гидрофобными системами. Отсюда следует, что лиофобные коллоидные растворы являются типичными коллоидными системами, а лиофильные системы представляют собой не что иное, как растворы высокомолекулярных соединений. Существуют и промежуточные системы, которые трудно отнести к какому-либо одному из названных классов, например, золь 8102 и золи гидроксидов некоторых металлов. Лиофильные системы устойчивы, т. е. стабильны во времени, лиофобные системы неустойчивы и постепенно [c.17]


    Дисперсные системы. Коллоидные растворы. Получение коллоидных растворов и и.х отличительные свойства. Степень дисперсности. Мицелла. Золи. Лиофильные и лиофобные коллоиды. Коагуляция и седиментация и причины образования осадка в коллоидных системах. Гели. Взаимная коагуляция коллоидов. Обратимые и необратимые коллоиды. [c.244]

    Коллоидные растворы сравнительно мало устойчивы во времени по сравнению с молекулярными растворами. Мицелла представляет собой агрегат более или менее простых молекул, характерный для данного золя только в данный момент и для совершенно определенных условий. Под влиянием различных факторов (температуры, света, электричества, изменения концентрации, механического воздействия, присутствия ничтожно малых количеств посторонних примесей), а иногда даже и без видимых причин в коллоидных системах протекает ряд своеобразных необратимых процессов, приводящих к изменению частиц дисперсной фазы и их выпадению в осадок. Изменение свойств коллоидной системы, происходящее в результате самопроизвольного процесса укрупнения частиц и уменьшения их числа в единице объема, называется старением. В одних коллоидных системах нарущение устойчивости происходит сравнительно быстро, другие системы могут сохраняться годами и даже десятилетиями без видимых изменений. [c.324]

    Обычно коллоидные системы подразделяют на лиофобные (которые также называют суспензоидами или гидрофобными, неорганическими, необратимыми или повторно нерастворимыми коллоидами) и лиофильные (которые также называют эмульсоидами или гидрофильными, органическими, обратимыми или повторно растворимыми коллоидами). [c.177]

    В некоторых случаях происходят необратимые изменения коллоидной системы при обезвоживании, и изотермы обводнения и обезвоживания не совпадают, так как обезвоженные коллоиды при новом обводнении адсорбируют все меньше воды. Такие коллоиды называют необратимыми. Подобные изменения в природных углях могут происходить и при обычных условиях, вследствие [c.91]

    При низких температурах нефтяные системы могут образовывать обратимые лиофобные золи и гели, если дисперсионной средой являются углеводороды, по отношению к которым твердая фаза нефтяных систем является лиофобной. При средних температурах равновесие может быть сдвинуто в сторону образования истинных высокомолекулярных растворов. Продолжительность периода, когда система находится в молекулярном состоянии, зависит от способности нефтяных систем к образованию новой дисперсной фазы. С повышением температуры системы в результате поликонденсационных процессов образуются карбены и карбоиды — твердые вещества, малорастворимые или нерастворимые ни в чем. Такие нефтяные системы являются типичными необратимыми коллоидными системами. [c.36]


    Обратимость и необратимость коллоидной системы определяется взаимодействием дисперсной фазы с дисперсионной средой, В случае обратимых систем дисперсная фаза молекулярно взаимодействует с дисперсионной средой, растворяясь в ней. Дисперсная фаза необратимых систем пе растворяется полностью в дисперсионной среде. [c.37]

    Зигмонди предложил классифицировать коллоидные растворы по способности сухого остатка, полученного в результате осторожного выпаривания жидкости, растворяться в чистой дисперсионной среде. Системы, сухой остаток которых не способен самопроизвольно диспергироваться в дисперсионной среде, он назвал необратимыми. Сюда относятся типичные коллоидные растворы — лиозоли металлов, гидрозоли иодида серебра и сульфида мышьяка и т. д. Обратимыми коллоидными системами он назвал системы, сухой остаток которых при соприкосновении со средой обычно сначала набухает, а затем самопроизвольно растворяется и снова [c.25]

    Сравнение систем, являющихся представителями этих классов, показало, что они обладают и другими, отличающими их друг от друга свойствами. Необратимые коллоидные системы имеют признаки коллоидных растворов их трудно получить с высоким содержанием дисперсной фазы они легко коагулируют при введении в них электролитов, образуя при этом компактные, содержащие малое количество дисперсионной среды осадки. Обратимые коллоидные системы, наоборот, можно получать достаточно высокой концентрации они гораздо менее чувствительны к электролитам, а осадки, которые все же могут выделяться при введении в золи лишь большого количества коагулятора, весьма объемисты, вязки и содержат много дисперсионной среды. [c.26]

    Легко видеть, что в то время как необратимые, или лиофобные, коллоидные растворы являются типичными коллоидными системами, обратимые, или лиофильные, системы представляют собою не что иное, как растворы высокомолекулярных соединений. В самом деле, самопроизвольно растворяться в дисперсионной среде и давать растворы с коллоидными свойствами способны только вещества, распадающиеся в растворах на отдельные и притом очень большие молекулы. Такими веществами как раз и являются высокомолекулярные соединения. Самопроизвольное образование типичных коллоидных систем с межфазной поверхностью раздела, как правило, невозможно, так как это противоречит термодинамике. [c.26]

    Здесь требуется уточнить понятие необратимости таких студней, поскольку в коллоидной химии необратимыми гелями называют системы, у которых нагревание и удаление жидкости вызывает необратимые изменения, связанные с кристаллизацией или полиморфными превращениями вещества. Например, сушка и прогрев гелей кремнекислоты приводит к образованию так называемого силикагеля, не набухающего Ъ воде. Аналогичные превращения происходят и с гелями гидроокисей многовалентных металлов. В случае же рассматриваемых здесь сшитых полимеров речь идет об отсутствии плавления студней при повышении температуры. Если же удалить сушкой растворитель или даже умеренно прогреть высушенный полимер, избегая, однако, термического распада, то при взаимодействии с жидкостью того же состава, какой имела жидкость в исходном студне, произойдет полное восстановление студня. Таким образом, необратимость здесь понимается в ином смысле, а именно как отсутствие плавления студня при нагревании, т. е. перехода его в текучий раствор. [c.21]

    Участок диаграммы В-В - это также образование свободнодисперсной системы (золя), но уже необратимого типа, где ССЕ представлены твердыми частичками уплотнения, полученными в результате химических реакций. Здесь асфальтены, образуя крупные ассоциаты, насыщают раствор и выпадают в осадок -образуют отдельную фазу (карбены). В конце участка (вблизи точки В ) карбены переходят в карбоиды и образуется типично коллоидная система, переходящая далее ( участок В - Г) в гелеобразное, т.е. в связнодисперсное состояние. При очень высоких (500 - 550 °С) температурах эта система переходит в сплошную твердую фазу (точка Г), так называемую твердую пену (кокс). [c.170]

    Если бы растворы высокомолекулярных веществ представляли собой такие же системы, то, несомненно, они должны были быть отнесены к настоящим коллоидным системам. Действительно, ряд авторов [3, 4] считают, что растворы высокомолекулярных веществ обладают теми признаками коллоидных растворов, которые перечислены выше, и поэтому относят их к коллоидным растворам, являющимся микрогетерогенными и термодинамически неустойчивыми. В качестве основного доказательства микрогетерогенности обычно фигурирует неприменимость правила фаз к процессам растворения и осаждения высокомолекулярных веществ, что в наиболее общей форме было сформулировано в правиле осадков Во. Оствальда. Вторым доводом служит явление старения и, вообще, наличие необратимых процессов (гистерезисные явления при осаждении и растворении). Косвенным доказательством наличия микрогетерогенности раствора высокомолекулярных веществ являются плохая воспроизводимость результатов, получаемых различными авторами при исследовании растворов высокомолекулярных веществ, и зависимость свойств этих растворов от метода их получения. [c.243]


    Ребиндер с сотрудниками в результате количественного исследования различных случаев структурообразования Б коллоидных системах установил возможность образования двух типов структур коагуляционных тиксотропных, обратимо восстанавливающихся после механического разрушения, и конденсационно-кристаллизационных, необратимо разрушающихся при механическом воздействии. [c.231]

    Процесс оводнения неэластичных гелей интересен тем, что он сопровождается своеобразным явлением, получившим название гистерезиса оводнения и обезвоживания. Гистерезис в широком смысле означает О, По явление, состоящее в задержке (отставании) какого-либо процесса по сравнению с другим, обратным ему, процессом. Графически гистерезис выражается несовпадением кривых, прямого и обратного процессов. Существо гистерезиса заключается или в необратимых изменениях, происходящих в системе во время прямого процесса, или же, чаще всего, в весьма большой длительности срока установления в системе равновесного состояния, т. е. во влиянии фактора времени. Больше всего явление гистерезиса свойственно коллоидным системам, в частности растворам высокомолекулярных соединений, для которых особенно большую роль играет фактор времени. Кстати, с этим явлением мы уже встречались, например в так называемом сорбционном гистерезисе, который заключается в задержке поглощенного при абсорбции или адсорбции вещества в случае обратного процесса—десорбции (десорбция идет гораздо медленнее, чем сорбция). [c.190]

    Пластичные (консистентные) смазки представляют собой пластические коллоидные системы. Это особый класс смазочных материалов, приготавливаемых путем введения в смазочные масла специальных, главным образом твердых, загустителей, ограничивающих их текучесть. Большинство консистентных смазок в широком интервале температур ведет себя как твердые упругие тела. Они приобретают способность необратимо деформироваться (течь), если приложенная сила больше предела текучести смазки. С повышением температуры предел тек ести консистентных смазок понижается и при некоторой, определенной для каждой смазки температуре становится равным нулю (смазка течет). Вторым характерным признаком консистентных смазок, отличающим их от смазочных масел, является аномальное внутреннее трение, в отличие от нормальных жидкостей, зависящее от условий течения (структурная вязкость). Эти свойства консистентных смазок связаны с их коллоидной природой и структурой. [c.146]

    Есля при старении возникают химические процессы, то синерезис усложняется и его обратимость теряется (возникает необратимое старение коллоидной системы). [c.404]

    Описанное выше последовательное течение стадий набухания, растворения, застудневания, синерезиса и возможность обратного перехода от синерезиса к раствору (золю) свойственно не всем коллоидным системам. В этом отношении лиофильные коллоиды делятся на три группы обратимые, необратимые и не вполне обратимые. [c.25]

    Типично лиофобные коллоидные системы при коагуляции и выделении дисперсной фазы образуют осадки, порошкообразные по структуре и не содержаигне значительных количеств дисперсионной среды, Эти осадки, как правило, уже не могут обратно перейти в состояние золя. Таким образом лиофобные золи характеризуются в большинстве случаев необратимостью. [c.195]

    Фрейндлих высказал мнение, что обратимость и необратимость коллоидной системы определяется взаимодействием дисперсной фазы с дисперсионной средой. Дисперсная фаза обратимых коллоидов молекулярно взаимодействует с дисперсионной средой и поэтому способна в ней растворяться. Исходя из этого, такие коллоидные системы Фрейндлих предложил также называть лиофиль-ными коллоидными системами (от греч. слова лиос — жидкость, фило — люблю). Дисперсная фаза необратимых коллоидов неспособна взаимодействовать с дисперсионной средой, а следовательно, и растворяться в ней. Поэтому эти системы Фрейндлих назвал лиофобными (от греч. слова фобе — ненавижу). В том случае, когда дисперсионной средой системы является вода, эти два класса можно называть соответственно гидрофильными и гидрофобными системами (от греч. слова гидра —вода). [c.26]

    В некоторых руководствах необратимые, или лиофобные, коллоидные системы называются также суспензоидами, а обратимые, или лиофильные, системы— эмульсоидами из-за сходства некоторых свойств этих систем с суспензиями или эмульсиями. Однако эта терминология малообоснована. [c.26]

    Сравнительное изучение типичных коллоидов и высокомолекулярных веществ показало принципиальное различие ряда их свойств. Как уже было указано, типичными свойствами коллоидных систем являются гетерогенность, поверхность раздела фаз, агрегативная и термодинамическая неустойчивость, необратимость. В противоположность типичным коллоидным системам работами Каргина и его сотрудников было показано, что растворы высокомолекулярных веществ — термодинамически обратимые молекулярные гомогенные (однофазные) системы, агрегативно устойчивые без стабилизаторов. Сами высокомолекулярные вещества отличаются способностью к самопроизвольному растворению при соприкосновении с хорошими растворителями, а растворы получаются устойчивыми и без стабилизатора. В этом отношении высокомолекулярные вещества стоят ближе к веществам, образующим истинные растворы. Однако в плохих растворителях или в нерастворяющей среде высокомолекулярные вещества способны давать дисперсии со свободными поверхностями раздела. Эти дисперсии по своим свойствам относятся к типичным микрогетерогенным и коллоидныр системам (например, синтетический латекс и дисперсии полимеризационных смол). [c.18]

    Сухие остатки некоторых коллоидных растворов (полученные при осторожном выпаривании) способны вновь образовывать золь при добавлении соответствующего растворителя (дисперсионной среды), т. е. эти коллоидные системы обратимы. Сухие остатки коллоидных растворов, не образующих золь при добавлении дисперсионной среды, называются необратимыми коллоидными системами. Поскольку у обратимых систем дисперсная фаза взаимодействует с жидкой дисперсионной средой и может в ней растворяться, т. е. обладает сродством к ней, Фрейндлих и предложил называть их лиофильными системами. К ним относятся растворы высокомолекулярных соединений белки, нуклеиновые кислоты и т. п. У необратимых систем дисперсная фаза не взаимодействует с дисперсионной средой и, следовательно, не растворяется в ней. Их назвали лиофобными системами. К ним относятся типичные коллоидные растворы золи гидроокиси железа, сернокислого бария и т. п. Если дисперсионной средой служит вода, то системы называются соответственно гидрофильными или гидрофобными. Гидрофильность обусловлена присутствием в молекулах достаточно большого числа гидрофильных групп, которыми могут быть или диссоциированные (ионогенные) R—СООН, R—NH3OH, R— OONa, R—NH3 I, или недиссоциированные (полярные) [c.173]

    По характеру ме/кфазног . поверхностного взаимодействия между, дисперсной фазой и дисперсионной средой все коллоидные системы могут быть разделены на два класса (при наличии, как и ири любой классификации природных объектов, непрерывного перехода от одного сласса к другому). Это обратимые,,или лиофильные, и необратимые, или лиофобные, коллоидные систе-.мы. [c.259]

    Как видно из определения, к коллоидным системам относятся два основных типа систем. Первому типу — гетерогенным высокодисперсным системам — соответствует первый указанный ранее тип укрупнения частиц путем образования трехмерных и двухмерных структур в инертной среде он характеризуется наличием развитой поверхности раздела. Условие высокодисперсности отделяет коллоидные системы от грубых, быстро оседаюпщх суспензий и порошков с низкой кинетической устойчивостью. Ввиду наличия частиц со свободной поверхностной энергией, коллоидные дисперсные системы являются термодинамически неустойчивыми, потому что стремление этой энергии к уменьшению приводит к агрегации частиц (см. четвертую главу). Частицы не слипаются, т. е. оказываются агрега-тивно устойчивыми лишь при условии, что на их поверхности за счет свободной поверхностной энергии адсорбируются молекулы или ионы третьего компонента системы или стабилизатора. Однако агрегативная устойчивость этих частиц имеет индуцированный характер, и по истечении достаточного промежутка времени (путем рекристаллизации и др.) процесс слипания неизбежно наступает. В этом смысле коллоидные дисперсные системы являются необратимыми системами. Таковы основные черты первого типа коллоидных систем, которые характеризуются, по Пескову, как гетерогенные высокодисперсные системы, обладающие агрегативной устойчивостью только в присутствии стабилизатора. [c.15]

    Считают, что уголь является коллоидной системой, способной к обезвоживанию и обводнению. Однако при этом протекают необратимые процессы старения коллоида, что приводит к снижению способности адсорбировать влагу и одновременно снижает набухаемость углей. Петрографические компоненты по разному взаимодействуют с влагой, наибольшей влажностью отличаются витреновые и наименьшей — фюзеновые ингредиенты. В гуминовых углях содержание гигроскопической влаги снижается с ростом степени метаморфизма (иногда антрациты выпадают из этой закономерности). Содержание влаги в углях определяют весовым или прямыми объемными методами (ГОСТ 11014—81), а также с помощью электронного влагомера. [c.59]

    Еще Зигмонди (в начале XX в.) обратил внимание на то, что лиофобные коллоиды обладают свойством необратимости (после высушивания золя они не способны растворяться и вновь давать золь), а лиофнльные—свойством обратимости (самопроизвольного обратимого растворения), и предложил все коллоидные системы делить на необратимые и обратимые,. Однако и в дальнейшем еще долгое время обратимые дисперсные системы продолжали объединять под названием коллоидных растворов, или золей, в одну группу с типичными лиофобными, т. е. необратимыми коллоидами по признаку, якобы, общности их мицелляр-ного строения, т. е. и этим системам приписывали свойство гетерогенности. [c.11]

    Битумные вещества могут не только сами переходить в раствор, но и вызывать растворение и небитумных веществ, адсорбируясь на поверхности их частиц и сообщая им индуцированную растворимость (по Пескову), или, как иначе говорят, служат защитными коллоидами. Таким образом, небитумные вещества могут входить в состав коллоидных систем, из которых, например, состоят многие битумы поэтому битумы могут содержать небитумные вещества не только в виде механической примеси . Это очень осложняет исследование, так как часто не удается найти метод для различения и отделения веществ разных групп, столь тесна объединенных в коллоидной системе, тем более, что адсорбция битумных веществ часто необратима. [c.158]


Смотреть страницы где упоминается термин Коллоидные системы необратимые: [c.197]    [c.360]    [c.18]    [c.138]    [c.269]    [c.338]   
Курс коллоидной химии (1976) -- [ c.25 ]




ПОИСК





Смотрите так же термины и статьи:

Системы коллоидные

Системы необратимые



© 2025 chem21.info Реклама на сайте