Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Растворение обратимое

    Следовательно, процесс растворения — обратимый процесс, сопровождающийся процессом осаждения  [c.100]

    Процессы растворения обратимы. Следовательно, нужны данные о равновесии между твердой фазой и раствором. Такие данные о совместной растворимости хлорида калия и хлорида натрия в воде при различной температуре приведены в табл. 8. [c.170]


    Экспериментально установлено, что диффузия газов в металлах протекает в атомарном состоянии. Водород, находящийся в металле, ионизируется и диффундирует в виде протонов. Поскольку процесс диффузии газа определяет хемосорбция, то насыщение газами металлов в значительной степени зависит от состояния их поверхности. Наличие на поверхности металлов окисных или других пленок резко замедляет диффузию газов. Следует отметить, что в процессе пайки в газовых средах, когда окисная пленка с поверхности соединяемых деталей удалена, создаются особенно благоприятные условия для насыщения металла газами. В результате диффузии в поверхностном слое металла образуется зона твердого раствора с плавным изменением концентрации. Истинное растворение является эндотермическим процессом, поэтому с повышением температуры растворимость газов в большинстве металлов возрастает. Процесс растворения обратимый. Если содержание растворенного газа превысит предел растворимости, то должен наступить этап перестройки решетки пересыщенного твердого раствора в решетку низшего химического соединения. Наступление этого этапа зависит от соотношения скоростей [c.124]

    Электрическая энергия, вырабатываемая элементом (или цепью элементов), равна полезной работе А суммарного процесса, протекающего в элементе, который мы рассматриваем как термодинамическую систему. Полезная работа Л, процесса максимальна н равна убыли изобарного потенциала системы —AG. Это изменение изобарного потенциала вызвано совокупностью электрохимических реакций на электродах, т. е. суммарной химической реакцией или другими физико-химическими процессами (растворение, выравнивание концентраций, фазовое превращение и др.), протекающими обратимо. В том случае, когда процесс является обратимым, можно, заставляя элемент работать при почти полной компенсации его э.д.с. внешней разностью потенциалов, т. е. заставляя его находиться бесконечно близко к равновесию (этому состоянию и соответствует измеренная величина ), вычислить изменение изобарного потенциала системы AG через измеренную э.д.с..  [c.527]

    При работе концентрационного элемента оба электрода в совокупности не испытывают термодинамического изменения, так как равные количества водорода переходят в раствор на левом электроде и выделяются из раствора на правом. Одновременно в левом электролите количество НС1 растет, а в правом — уменьшается. Таким образом, единственным результатом суммарного процесса является перенос растворенного вещества (НС1) из правого раствора в левый, т. е. из более концентрированного в более разбавленный. Этот процесс является самопроизвольным и поэтому сопровождается уменьшением изобарного потенциала. Путем диффузии он может протекать необратимо без совершения работы в элементе же он протекает обратимо, и получается работа электрического тока. [c.562]


    Для реакций первого порядка по растворенному газу, при протекании которых концентрации остальных реагирующих веществ практически постоянны (скорость обратной реакции практически одинакова во всех точках), локальная скорость реакции выражается как а — Ае), вместо кха для необратимой реакции первого порядка (см. главу И). При замене а разностью (а — А ) в уравнениях (У,28)—(У,36) для необратимой реакции первого порядка получаем следующее выражение для скорости такого процесса с обратимой реакцией псевдопервого порядка  [c.127]

    Для обратимой реакции надо применять уравнения (У,131) и (У,132). Примем, что масса жидкости не содержит растворенный НаЗ, поэтому Л = О и В = = 10 моль/см . Предположим также, что коэффициенты диффузии продуктов реакции такие же, как и для амина. Тогда [c.135]

    Быстрые реакции. Как и для проточного абсорбера, можно считать, что если реакция достаточно быстра, чтобы заметная доля абсорбируемого газа реагировала в пленке, концентрация непрореагировавшего газа в массе жидкости будет ничтожно малой (в случае необратимой) или близкой к равновесной (в случае обратимой реакции). Состав массы жидкости, выраженный концентрацией вещества В, реагирующего с растворенным газом, изменяется во времени. Если в первоначальный момент он равен В° (0), а в момент времени I его значение В (О, то [c.172]

    Реакция, по которой взаимодействует растворенная двуокись углерода, обратима [c.189]

    Рассмотрим случай, когда в массе жидкости выполняются равновесные условия и концентрация растворенного газа равна А . Растворенный газ находится в равновесии с реагентами, при нарушении которого появляются новые порции растворенного газа. Реакции, таким образом, обратимы. [c.265]

    Потенциалы некоторых металлов в водных растворах (Hg, Ag, Си, С(1 и др.) в довольно широком диапазоне концентраций их ионов достаточно хорошо подчиняются уравнению (277). Если же наряду с разрядом ионов данного металла протекает необратимо какой-либо другой катодный процесс (например, разряд водородных ионов, ионизация кислорода и др.), то начинает идти растворение металла (Дт 0) и потенциал последнего перестает быть обратимым. [c.157]

    Т. е. для электрохимического растворения металла необходимо присутствие в электролите окислителя — деполяризатора, обратимый окислительно-восстановительный потенциал которого по-ложительнее обратимого потенциала металла в данных условиях. При соблюдении этого условия >> 0. а < 0. [c.182]

    При пересечении анодных кривых с горизонталью 1/ Х получаются отрезки ]/хА 1 и УхА а, длина каждого из которых характеризует соответствующую величину анодного тока данного металла, т. е. суммарную скорость его растворения за счет саморастворения и за счет внешнего тока от других металлов. Таким образом, анодные функции сохраняются не у всех металлов, а только у тех, обратимый потенциал которых отрицательнее значения общего потенциала системы У (т. е. только у первого и второго металлов) через них протекает анодный ток, который подается во внешнюю цепь или обусловлен саморастворением металла. [c.289]

    Эффективность вредного влияния (ускоряющего действия) катодного контакта на коррозию основного металла в обычных условиях активного растворения зависит а) от природы металла (его обратимого электродного потенциала в данных условиях и поляризуемости электродных процессов) и б) от величины по- [c.358]

    Диссоциация — обратимый процесс . Поэтому для диссоциации растворенных веществ на ионы справедливы общие законы равновесия. Так, для процесса [c.248]

    Как указывалось выше, электролитическая диссоциация — обратимый процесс. Поэтому для диссоциации растворенных веществ на ионы справедливы общие законы равновесия. Так, для процесса [c.177]

    При выводе уравнения (3.131) использовались представления об обратимости кристаллохимической реакции на поверхности раздела фаз и не было принято никаких допущений о направлении реакции. Следовательно, это уравнение можно использовать при различных соотношениях между с и с,. При с>с. уравнение описывает кристаллохимическую стадию процесса роста кристалла, в противном случае — растворения. [c.277]

    Теплотой плавления, испарения, сублимации, полиморфного, превращения и других процессов называется теплота, поглощаемая при изотермических и обратимых процессах плавления, испарения, сублимации, полиморфного превращения, а также в процессах растворения и т. д. (раньше их часто называли скрытыми теплотами). [c.183]

    Согласно современным представлениям, жидкофазная гидрогенизация непредельных соединений, осуществляемая на порошкообразном катализаторе, является сложным процессом, состоящим из многих взаимосвязанных и обратимых стадий 1) растворение водорода в жидкости 2) диффузия молекул водорода и непредельного соединения к поверхности катализатора 3) адсорбция реагирующих веществ на контакте 4) активация молекул водорода и непредельного соединения катализатором 5) акты реакции на контакте 6) десорбция и диффузия в объем молекул продукта реакции. [c.67]


    В результате растворения водорода в стали могут развиться два вида изменений механических свойств — обратимые и необратимые. [c.259]

    Адсорбция водорода на слоях металлов Си, Ag, 2п, Сс1 при температурах от —195 до 50—200 С и давлениях от 10 до 2- 10 2—4-10"2 мм рт. ст. происходит практически мгновенно и не сопровождается растворением газа в металле при образовании прочных поверхностных соединений. В этом случае она незначительна, примерно пропорциональна давлению, равновесна и обратима. Адсорбция водорода на указанных металлах является молекулярной хемосорбцией, не связанной с диссоциацией На на атомы [31]. [c.20]

    Абсорбция хлористого водорода водой представляет собой гетерогенный обратимый экзотермический процесс образования гидратов хлористого водорода (21.7.1)иих растворения в воде. [c.351]

    В газовых и жидких средах в МФП в зависимости от прочности связей могут протекать обратимые процессы, сопровождающиеся увеличением (адсорбция и кристаллизация) или уменьшением (десорбция или растворение) массы твердого тела. Глубина и скорость протекания физических процессов зависит от состояния равновесия системы н регулируется параметрами системы (температурой, давлением и др.). Характерной особенностью физических процессов является неизменность химического состава исходных и конечных продуктов в системе в целом. [c.56]

    Жидкий оксазиновый редоксит [306, с. 155] получен растворением обратимой окислительно-восстановительной системы нильский голубой — лейконильский голубой в октиловом спирте. Водные растворы этой системы изучены [322]. Нильский голубой (I) из-за наличия четвертичного азота является катионом R+ и способен образовывать свободное основание ROH. В восстановленном состоянии (II) он присоединяет ионы Н+ к боковым аминогруппам, что придает ему свойства двухосновной катионкислоты a2H 5 [c.235]

    Из металлов первой электрохимической группы наиболее полно изучена платина, хотя из-за высокой чувствительности ее водородного потенциала к примесям полученные данные не отличаются хорошей воспроизводимостью. Н( сомненно, что в области положительных потенциалов (не очень удаленных от обратимого потенциала водородного электрода) на поверхности платины всегда присутствует адсорбированный водород. Это установлено измерением мкости, а также другими методами. Так, количество адсорбированного водорода можно найти для каждого значения потенциала при помощи кривых заряжения, т. е. кривых, передающих изменение потенциала электрода с количеством подведенного электричества чли (при постоянной силе тока) с течением времени. При таком кулонометрическом определении количества водорода (или иного электрохимически активного вещества) необходимо, чтобы его выделение (или растворение) совершалось со 100%-ным выходом по току. Все возможные побочные реакции — электровосстановление или выделение кислорода, катодное восстановление или анодное окисление органических веществ и других примесей — должны быть полностью исключены. Этого можно достичь двумя методами. В первом из ннх сила накладываемого на ячейку тока настолько велика, что значительно превосходит предельные токи восстановления и окисления примесей их вредное влияние поэтому не проявляется. Заряжение электрода проводят с большой скоростью, а кривую заряжения регистрируют автомати- [c.414]

    Отсутствие надежных данных по кислородному перенапряжению объясняется сложностью процесса анодного образования кислорода и почти неизбежным наложением на него побочных и вторичных реакций. Прежде всего необходимо напомнить, что обратимый кислородный электрод экспериментально реализовать чрезвычайно сложно, и, следовательно, входящая в уравнение (20.5) величина не определяется опытным путем. Ее обычно рассчитывают теоретически. Для выделения газообразного кислорода из растворов кислот необходимо, чтобы потенциал анода был более положительным, чем равновесный потенциал кислородного электрода ( + 1,23 В при ан = 1 и 25° С), на величину кислородного перенапряжения, отвечающую данной плотности тока. Однако еще до достижения такого высокого положительного потенциала больщинство металлов термодинамически неустойчивы, и вместо реакции выделения кислорода идет процесс их анодного растворения или окисления. Для изучения кинетики выделения кислорода из кислых сред можно использовать поэтому только металлы платиновой группы и золото (стандартные потенциалы которых ноложительнее потенциала кислородного электрода), а также некоторые другие металлы, защищенные от растворения в кислотах стойкими поверхностными оксидами. В щелочных растворах, где равновесный потенциал кислорода менее положителен (при аоп-= 1 и 25° С он составляет около +0,41 В), в качестве анодов применяют также металлы группы железа, кадмий и некоторые другие. Установлено, что в условиях выделения кислорода поверхность всех металлов, включая платину и золото, оказывается в большей или меньшей степени окисленной, и поэтому кислород выделяется обычно не на самом металле, а на его оксидах. [c.421]

    Реакция обратима. Это значит, что при растворении дихромата в воде всегда образуется некоторое, хотя и незначительное, количество ионов Н и СгОГ поэтому раствор дихромата имеет кислую реакцию. Если к раствору дихромата прибавлять щелочь, то гидроксид-ионы будут связывать находящиеся в растворе ионы водорода, равновесие смещается влево и в результате дихромат превращается в хромат. Таким образом, в присутствии избытка гидроксид-ионов в растворе практически существуют только ионы СгО , т. е. хромат, а при избытке ионов водорода -— иоиы СгаО . т. е. дихромат. [c.656]

    На практике обратимые реакции, имеющие истинно первый порядок в обоих направлениях, обычно не встречаются. Однако часто приходится иметь дело с реакциями первого порядка по отношению к концентрации растворенного газа, в которых концентрация реагента фактически неизменна в объеме, поэтому прямая реакция в целом имеет псевдопервый порядок. В то же время концентрация продуктов может быть также фактически неизменной во всем объеме [c.64]

    Ло данным примера У-4. Метод расчетгт повышения температуры при обратимой мгновенной реакции отсутствует, поэтому следуя методу, предложенному в разделе У-13, оценим изменение температуры, принимая, что теплоты растворения и реакции выделяются непосредственно у поверхности. Используем уравнение (У,144), модифицированное в соответствии с приведенными выше рекомендациями [c.142]

    На рис. 125 приведена зависимость обратимых потенциалов водородного и кислородного электродов от pH в водных растворах при 25° С для разных давлений водорода и кислорода. Прямые для рнг = 10 атм и для ро = 0,5-10 атм на рис. 125 соответствуют обратимым потенциалам водородного и кислородного электродов для- водных растворов, когда в них отсутствуют растворенные водород и кислород. Прямые для рп = 5-10 атм и РОа = 0,21 атм соответствуют обратимым потенциалам водородного и кислородного электродов в электролитах, соприкасаю- [c.173]

    Мурдох и Пратт [74] рассмотрели общий случай, когда растворенные молекулы вещества В входят в обратимую реакцию п-го порядка в одном направлении и г-го в другом. На межфазной поверхности (рис. 1-37) происходит химическая реакция при концентрации вещества В в фазе рафината, равной J.. Концентрация вещества В на поверхности контакта фаз ниже равновесной концентрации и равна С ., соответствующей концентрации, выраженной в [c.71]

    Рассматриваемая возможность взаимодействия между двумя окис-лительно-восстановительными системами, находящимися в контакте, предполагает, что среда не содержит веществ, способных вступать в реакции с этими системами. Однако в водной среде имеются ионы Н+, ОН , молекулы НаО и растворенный в ней кислород воздуха, которые могут вступать в реакции с системой Ох, Red. Данные вещества образуют электрохимические системы 1) Н+, Нг, которой соответствует обратимая реакция 2Н+ + 2е Нг (реакция на водородном электроде) фн+,н, = 0 2) 0Н , НгО, Ог, которой соответствует обратимая реакция Ог + 2НгО + 4е 40Н (реакция на кислородном электроде) фон,-о, = 0,4 В. [c.493]

    В работах, связанных с созданием пульсационной аппаратуры для процессов экстракции, сорбции, растворения, выщелачивания, смешения фаз, показана высокая эффективность искусственно создаваемых нестационарных гидродинамических процессов, протекающих с участием жидкой фазы [10]. Наиболее наглядно это видно на примерах аппаратов идеального перемешивания, в которых протекает реакция второго порядка (см., например, [И, 12]). Производительность реактора в нестационарных режимах возрастает по сравнению со стационарным на величину, пропорциональную квадрату амплитуды пульсаций входных концентраций, достигая максимальных значений при очень низких частотах. Производительность реактора становится еще больше, если периодически изменяется не только состав, но и расход, особенно, если амплитуды этих пульсаций велики и находятся в противофазе. Нестационарные режимы оказались наиболее эффективными в тех случаях, когда выражения для скоростей химических превращений имели экстремальные свойства или реакции были обратимыми. Особенно действенным каналом возбуждения для многих нестационарных процессов является температура теплоносителя. Для последовательных реакций в реакторе идеального перемешивания при неизменной температуре можно добиться увеличения избирательности, если порядки основной и побочной реакций отличаются друг от друга. [c.5]

    Для хемосорбционных процессов, когда, например, растворенный газ реагирует с жидкостью, равновесие определяется с использованием константы химической реакции. Так, в простейщем случае, если в жидкой фазе идет обратимая реакция между абсорбируемым компонентом А и активным веществом поглотителя В с образованием продукта D (А + В D) и если система следует закону Генри (при небольших концентрациях раствора), то константа фазового равновесия г]з определяется по формуле [c.154]

    Превращения, претерпеваемые алкилсерпыми кислотами и их солями при пиролизе, сводятся к тому, что все эти соединени дают главным образом олефины. Поведение солей метилсерной кислоты является исключением и зависит от природы, соли. При нагревании до 130—140° метилсерная кислота превращается по обратимой реакции в диметил сульфат и серную кислоту [130]. Йри температуре 150—160° реакционная смесь содержит приблизительно 3 моля метилсерной кислоты на 1 моль серной кислоты и диметилсульфата [131]. При растворении диметилсуль-фата, в 100%-ной серной кислоте при обычной температуре реакция идет в обратном направлении [132]  [c.25]


Смотреть страницы где упоминается термин Растворение обратимое: [c.38]    [c.48]    [c.171]    [c.489]    [c.506]    [c.553]    [c.179]    [c.372]    [c.377]    [c.89]   
Курс общей химии (0) -- [ c.148 ]

Курс общей химии (0) -- [ c.148 ]

Предмет химии (0) -- [ c.148 ]




ПОИСК





Смотрите так же термины и статьи:

Обратимое электрохимическое растворение металла



© 2025 chem21.info Реклама на сайте