Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Электрический дипольный момент

    Гетероядерные двухатомные молекулы. Электрические дипольные моменты. Ионный характер связи. [c.509]

Рис. У1П.6. Схема возникновения индуцированного электрического дипольного момента 1 Рис. У1П.6. Схема возникновения индуцированного электрического дипольного момента 1</

    Переход между двумя уровнями возможен только при изменении электрического дипольного момента системы или ее квадрупольного и т. п. момента, магнитного момента, поляризуемости, а также при возбуждении молекулы ударом электрона, атома, иона. Каждому из перечисленных процессов соответствует своя величина р. Наиболее часто в формуле (43.6) величина р — электрический дипольный момент системы. Тогда величина У " " называется дипольным моментом перехода. В дальнейшем, где специально не оговаривается, речь будет идти именно о спектрах, связанных с электрическим дп-польным моментом перехода (спектры поглощения и испускания). Если дипольный момент перехода равен нулю, электрическое дипольное излучение или поглощение невозможно, соответствующий переход запрещен. Из (43.6) следуют так называемые правила отбора, позволяющие предсказывать невозможность тех или иных переходов. [c.144]

    Изолированные молекулы алканов обладают небольшим электрическим дипольным моментом. В жидкой фазе группы СН3 и СН2 образуют, как правило, межмолекулярные водородные связи С-Н...С1. Возникновение водородных связей сопровождается перераспределением электронной плотности взаимодействующих молекул и, следовательно, изменением их электрических дипольных моментов (поляризацией). [c.163]

    ПОВЕДЕНИЕ НЕФТЯНЫХ ЭМУЛЬСИЙ ВО ВНЕШНЕМ ЭЛЕКТРИЧЕСКОМ ПОЛЕ Коалесценцию капель в электрическом поле выской напряженности используют, как правило, для разрушения эмульсий типа В/Н, полярная жидкость которых, имеющая №льшую диэлектрическую проницаемость и относительно высокую электропроводность (вода), диспергирована в неполярной жидкости с небольшой диэлектрической проницаемостью и сравнительно низкой электропроводностью (нефть, нефтепродукты). Так, диэлектрическая проницаемость воды, молекулы которой характеризуются большим электрическим дипольным моментом, составляет 81, в то вревкш как диэлектрическая проницаемость нефти - около 2. Усредненная диэлектрическая проницаемость водонефтяной эмульсии зависит от содержания воды в ней и с ростом обводненности увеличивается [41, 42]. Электропроводность чистой воды равна 10" - 10" Ом" -см", а соленой - еще больше. Электропроводность безводной нефти составляет всего 10" - 10" Ом" см" . При увеличении содержания воды проводимость эмульсии значительно повышается. [c.47]

    Для электрической ориентации частиц имеется гораздо больше возможностей. Исследования показывают (Толстой, 1955 г.), что анизометрические коллоидные частицы в водных растворах обычно обладают электрическими дипольными моментами, достаточными для того, чтобы за время достижения стационарной ориентации частиц в электрическом поле не произошло заметного разогревания раствора за счет прохождения через него тока (при надлежащей очистке раствора от электролита). Коллоидные частицы и макромолекулы могут иметь как собственный дипольный момент, определяемый их строением, так и дипольный момент, индуцированный электрическим полем. Если использовать постоянное электрическое поле (или постоянные импульсы напряжения), то ориентация частиц будет обусловлена взаимодействием с полем обоих видов диполей, и вклад от каждого из них в общий эффект выделить нелегко. Автор с сотрудниками (1959 г.) добились ориентации коллоидных частиц (галлуазита, бензопурпурина и многих других веществ в воде) с помощью высокочастотного электрического поля при частоте порядка десятков и сотен килогерц. При этом было пока зано, что влияние собственного дипольного момента, который жестко связан с частицей и заставляет ее колебаться в переменном поле, полностью подавлено из-за инерционности частицы. В этом случае она ориентируется только за счет взаимодействия с полем индуцированного момента, который, меняя направление синхронно с полем, создает постоянный момент силы. Величина этого момента в водных растворах достаточна для ориентации частиц. По-видимому, он возникает за счет поверхностного слоя воды. Если эта гипотеза подтвердится, то данный метод электрической ориентации частиц окажется универсальным для водных растворов. Применение высокочастотных электрических полей помогает значительно ослабить или устранить такие мешающие явления, как электролиз, поляризация и электрофорез, что делает метод особенно перспективным. Если же исследования этим методом дополнить параллельными исследованиями при ориентации в постоянном электрическом поле, то можно оценить величину постоянного диполь-ного момента частиц и найти угол между постоянным и индуцированным дипольными моментами. Например, при изучении частиц, галлуазита выяснилось, что индуцированный момент ориентиро  [c.33]


    Гетероядерная двухатомная молекула, подобная НР, обладает электрическим дипольным моментом, который обусловлен пространственным разделением положительных и отрицательных зарядов. Если положительный и отрицательный заряды одинаковой абсолютной величины q находятся на расстоянии г друг от друга, это означает наличие дипольного момента ц (греческая буква мю ), равного [c.536]

    Двухатомная молекула с неравномерным распределением заряда обладает электрическим дипольным моментом ц, равным [c.544]

    Полярная связь. Электрический дипольный момент молекулы [c.84]

    Наблюдаемая диэлектрическая релаксация вызвана существованием у молекул предельных углеводородов электрического дипольного момента, Поскольку поглощение мало, величина эффективного дипольного момента молекулы, ответственного за это поглощение, должна быть тоже мала. Однако его можно рассчитать, воспользовавшись уравнением (УП.4.47) и соотношением Онзагера - Кирквуда /46/  [c.135]

    Прежде чем приступить к выяснению природы полученных нами величин эффективных электрических дипольных моментов, отметим, что  [c.139]

    VII.17.6. Вычислить предельные напряжения сдвига суспензии с жестким электрическим дипольным моментом частиц р, в сильном электрическом поле. [c.229]

    Если принять, что жесткий электрический дипольный момент обусловлен ориентацией адсорбированных полярных молекул, то у, = 4яа>пГо и тогда = [c.229]

    У апротонных растворителей отсутствуют явно выраженные протоно-донорные или протоно-акцепторные свойства. У них не-больщая величина диэлектрической проницаемости и низкий или нулевой электрический дипольный момент. Растворенные вещества в апротонных растворителях заметно не диссоциируют. Апротонными растворителями являются бензол, хлороформ, тетрахлорид углерода, сероуглерод, циклогексан и др. [c.35]

    К апротонным относятся также растворители, которые называют полярными или диполярными апротонны-м и растворителями. У этой группы растворителей более высокая диэлектрическая проницаемость (е>15) и электрический дипольный момент (7-10" Кл-м и более). К ним относятся ацетон, нитрометан, диметилформамид, пропиленкарбонат, ацетонитрил, диметилсульфоксид и др. Кислотно-основные свойства этих растворителей выражены слабо, но все они сильно поляризованы. Помимо применения в аналитической химии диполярные апротонные растворители используют для проведения различных исследований в области кинетики, катализа, электрохимии и т. д., позволяя создавать наиболее благоприятные условия протекания реакций. [c.35]

    Однако при анализе задачи распространения света в оптически активном веществе необходимо учитывать и влияние магнитного поля (рис. УП1.6). Используя теорию возмущений, можно получить выражение для электрического дипольного момента це/, индуцированного полями ё и В электромагнитной волны в молекуле, которая находилась в состоянии Ф/, в виде суммы двух слагаемых  [c.175]

    Возникновение переменного электрического дипольного момента в молекуле цег(В) под влиянием переменного магнитного поля может быть качественно объяснено на основе спиральной модели молекулы, которая наиболее удобна для описания оптической активности. Такая модель подсказана экспериментами по распространению линейно поляризованного излучения в микроволновом диапазоне (А, 3 см) на отрезках левых и правых спиралей из медной проволоки диаметром 6...7 мм и длиной 10 мм. В этих экспериментах доказано вращение плоскости поляризации совокупностями произвольно ориентированных спиралей одного типа. [c.175]

    Электрический дипольный момент, индуцированный магнитным полем, можно получить из общего выражения [c.177]

    При исследовании равновесий с участием нескольких компонентов полезно комплексное использование методов эффекта Керра, электрических дипольных моментов и релеевского рассеяния света. [c.247]

    Перед измерениями химически чистые вещества подвергались перегонке, осушались хлористым кальцием и снова перегонялись. Степень чистоты объектов исследования контролировалась хроматографически. Результат анализа показал, что содержание исследуемых изомеров в обравгхах не ниже 99%, концентрация полярных примесей незначительна. Из всех полярных 1фимесей особого внимания заслуживают следы воды, так как вода обладает сравнительно малым молекулярным объемом и большим электрическим дипольным моментом молекул. Это приводит к тому, что небольшие примеси воды могут заметно влиять на величину " образцов. Анализ на присутствие следов воды в исследованных жидких алканах проводился по методу Фишера, Концентрации воды оказались ниже концентраций, соответствующих насыщенным растворам. Учитывая это, можно полагать, что вода находится в растворенном состоянии, а не в виде эмульсии /6/. Следовательно, [c.126]

    Суммарная кривая Дев (со) зависит от соотношения Л. В С. Если превалирует коэффициент А, то Дев (со) изменяется как (3//<Эсо. При С А кривая Дев(ы) имеет симметричный вид функции (со). Коэффициент В обычно меньше А и С которые определяют форму кривой МКД. Задача эксперимента состоит в том, чтобы определить А, В, С и на их основе оценить знаки и численные значения магнитных и электрических дипольных моментов переходов. [c.258]

    В начале шестидесятых годов О. Р. Лайд, определяя дапольный момент с помощью эффекта Штарка, нашел, что его величина для изобутана равна 0,132 В /88/, а для н-пропана - 0,0830/89/. Следует отметить, что определение электрического дипольного момента по Штарк-эффекту дает возможность измерять значения дипольного момента порядка 0,1-0,21) с высокой точностью (до 0,2%). Важно, что дпя метода Штарка несущественно даже значительное загрязнение газов, так как дпя измерения выбираются лишь те линии поглощения, которые принадлежат исследуемой молекуле /90/. Стало ясно, что молекулы алканов обладают постоянным электрическим дЬпольным мо-мштом. Постоянный дипольный момент молекул алканов существует благодаря неполной взаимной компенсации дипольных моментов отдельных С-С-и С-Н-связей /87/. [c.142]


    Полярная головка фосфолипидной молекулы состоит из фосфатной и аминной групп, соединенных короткой углеводородной цепочкой (СН2)г (рис. 9.1). Аминная группа заряжена положительно, а фосфатная — отрицательно, т. е. головка фосфолипидных молекул обладает довольно значительным электрическим дипольным моментом, который и обусловливает их Гидрофильность. Отметим, что определенный вклад в суммарный дипольный момент головки вносят также группы С = 0 [425]. Головки большинства фосфолипидов могут диссоциировать на ионы, приобретая при этом, помимо дипольного момента, электрический заряд — обычно отрицательный. [c.148]

    Для всех гетеронуклеарных молекул можно отметить характерную особенность электронная плотность в них распределена несимметрично относительно обоих ядер. При таком распределении электронной плотности химическую связь называют полярной или точнее полярной ковалентной связью, а молекулы полярными. Среди молекул гидридов у НР особенно заметно несимметричное распределение заряда (рис. 31). Не только несвязывающие молекулярные орбитали 1а , 2а и 1л,1 практически целиком сосредоточены вокруг ядра фтора, но и на связывающей молекулярной о-орбитали электронная плотность благодаря большому различию в эффективных зарядах ядер водорода (1) и фтора (5.20) смещена в сторону последнего. Вследствие этого электрические центры тяжести положительных зарядов ядер и отрицательных зарядов электронов не совпадают, и в молекуле возникает постоянный электрический диполь — система двух равных по величине и противоположных по знаку зарядов +<7 и —д, разде-. ленных расстоянием I, называемым длиной диполя (рис. 32). Взаимодействие молекулы с электрическим полем будет зависеть от величины вектора а — электрического дипольного момента молекулы [c.84]

    В таких молекулах имеется электрический дипольный момент, т е. они полярные. Это происходит из-за разли птой электроотрвдательнос-ти атомов, участвующих в образовании ковалентнс Й химической свячн. [c.184]

    УП.17.4. Решить задачу, аналогичную предыдущей, при действии электрического поля на дисперсную систему и при наличии у частиц жесткого электрического дипольного момента величиной д,. Какова должна быть величина ц, чтобы критическая скорость сдвига составляла КР с при заданных величинах т]а, Е, а Сколько униполярно ориентированных молекул воды на поверхности частицы могут создать нужное значение р,  [c.228]

    Первый член ( монопольный ) в этом выражении представляет энергию взаимодействия кулоновского точечного заряда ядра 2е с окружающими зарядами, т. е. не зависит от ориентации ядра. Можно отметить, что он не представляет интереса также и при сравнении энергии основного и возбужденного состояний ядра (гл. V), так как 1е и и (0) для них не различаются. Второй член ( дипольный ) в выражении (1У.З) также исчезает, так как р(г)=р(—г), т. е. центры массы и распределения плотности заряда ядра совпадают, ядро не обладает электрическим дипольным моментом, и интегралы типа /лгф(г)с1и равны нулю. По тем же причинам инвариантности по отнощению к изменению знака координат исчезают все члены с нечетными степенями х . Таким образом, интерес представляет лищь третий, квадрупольный, член [c.92]

    Изотропные вещества в однородном электрическом поле большой напряженности обладают способностью к двулучепреломлению монохроматического линейно поляризованного луча света, распространяющегося перпендикулярно приложенному полю. Это явление было открыто в 1875 г. Керром в экспериментах со стеклом (прозрачное изотропное вещество), а также с жидкостями. Лишь в 1930 г. наблюдали эффект Керра в газах и парах. Таким образом, эффект Керра представляет электрооптическое явление, которое состоит в том, что изотропное вещество, помещенное в электрическое поле, приобретает свойство оптически одноосного кристалла с оптической осью, направленной вдоль приложенного поля, т. е. внешнее электрическое поле вызывает искусственную анизотропию вещества. Такое воздействие поля обусловлено тем, что анизотропные молекулы изотропного вещества под влиянием поля преимущественно ориентируются вдоль поля (рис. XIII.1). Наличие постоянного электрического дипольного момента молекул усиливает этот эффект. [c.234]

    Через виток правой спирали (рис. VIII. 6,6) проходят силовые линии магнитного поля В световой волны, перпендикулярные линиям электрического поля ё. Положительное изменение во времени В, т. е. В<0, вызывает индуцированное поле ётя такого направления, что его магнитное поле В нд противоположно вызвавшему его появление полю В. Это изменение В ид вызывает движение положительного заряда вдоль спирали, которое приводит к появлению электрического дипольного момента В случае правой спирали Xei(B) направлен влево, а для левой спирали — вправо (рис. [c.176]

    VIII.6, й). Направления дипольных моментов даны согласно физи-ческому определению вектора электрического дипольного момента от отрицательного полюса к положительному. [c.176]

    Те же взаимодействия, которые определяют дисперсию оптического вращения и кругового дихроизма, определяют спектры комбинационного рассеяния с круговой поляризацией. Поскольку индуцированный электрический дипольный момент пропорционален тензору электрической поляризуемости атп и вращательной полярИЗУ6МОСТИ тп (индексы тип относятся к электронным состояниям), разность в интенсивности рассеяния лучей с левой и правой круговой поляризацией А = 1—/r = A/(v) будет определяться произведением [c.216]

    В приближении упругого рассеяния электрическое поле излучения =eazos(лt, падающего на изотропную молекулу, индуцирует электрический дипольный момент р,, меняющийся с частотой падающей волны (о  [c.229]


Смотреть страницы где упоминается термин Электрический дипольный момент: [c.248]    [c.487]    [c.140]    [c.141]    [c.145]    [c.440]    [c.440]    [c.440]    [c.440]    [c.229]    [c.176]    [c.177]    [c.177]    [c.215]    [c.230]    [c.243]    [c.245]   
Смотреть главы в:

Физическая и коллоидная химия -> Электрический дипольный момент


Спектры и строение простых свободных радикалов (1974) -- [ c.0 ]

Квантовая механика и квантовая химия (2001) -- [ c.126 ]

Общая химия (1964) -- [ c.167 ]

Строение неорганических веществ (1948) -- [ c.247 ]

Молекулярная фотохимия (1967) -- [ c.30 ]

Теоретические основы органической химии (1973) -- [ c.0 , c.102 , c.115 ]

Курс физической органический химии (1972) -- [ c.42 , c.114 ]

Спектры и строение простых свободных радикалов (1974) -- [ c.0 ]

Квантовая механика и квантовая химия (2001) -- [ c.126 ]




ПОИСК





Смотрите так же термины и статьи:

Дипольный момент



© 2025 chem21.info Реклама на сайте