Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Этилен длины связей и углы

    Примечание. Для ацетилена по сравнению с этиленом длина связи между атомами С меньше, а валентный угол больше. Поэтому оптимальный параметр увеличивается до 3,2-10 — 3,4-10 см. В отличие от этилена адсорбция и активация ацетилена на N1 будет осуществляться не на элементах решетки с параметром 2=2,49-10 см, а на гранях с параметром 1 = 3,5-10 см. [c.79]

    Оценки межатомных расстояний, которые получаются по таким радиусам, можно сравнить с результатами наиболее точных измерений расстояний углерод — углерод в этане, этилене и ацетилене (табл. 8). Из всех гомологических рядов наиболее полно изучены нормальные парафиновые углеводороды от метана СН4 до гептана jHje- Основной вывод этой серии работ состоит в том, что длина связи С—С и валентный угол ССС в углеводородах отличаются большим постоянством [c.140]


    Угол 3 между двойной и простой связями в этилене и аллене равен 120°, а угол а между двумя двойными связями в аллене равен 180°. Расстояние между углеродными атомами, связанными двойной связью, равно 1,3 А, а между углеродными атомами, связанными простой связью, равно 1,54 А. Все углы между простыми связями равны 110" . Из этой модели, используя значения длин связей и валентных углов, можно видеть, что алле-новая связь в цикле возможна будет уже в семи- и восьмичленных кольцах. Эти сообра- / , жения впервые были вьюказа- К, / ны А. Е. Фаворским и Н. А / у [ Домниным [1, 2, 3]. ч /  [c.69]

    Угол С1СО в фосгене или С1СС в хлорэтиленах по мере увеличения двоесвязности связи С—С1 должен приближаться к 120 Иными словами, между длиной связи С—С1 (как функции процента двоесвязности) и углами С1СС в хлорзамещенных этиленах должна наблюдаться определенная зависимость. Авторы рассматриваемой статьи показывают, что действительно такая зависимость имеется (выпадает только цис-дихлорэтилен) и притом она близка к линейной. [c.224]

    Первоначальные представления о размере валентных углов, образуемых атомом углерода, насыщенным и ненасыщенным, подсказывались уже вант-гоффовской моделью этого атома (1874). В 1928 г. Полинг ввел понятие о гибридизации и показал расчетным путем как эта гибридизационная модель позволяет объяснить образование тетраэдрических и других углов, предсказываемых классической стереохимией. Это же представление о гибридизации позволило не только объяснить отклонения от ненапряженных валентных углов, но и вычислить, хотя бы в качественном приближении такие отклонения, как например, отклонения от углов НСН в различных по величине кольцах циклоалканов (Килпатрик и Спитцер, 1946). Как было сказано, Коулсон (1947) предложил характеризовать степень гибридизации данной орбитали выражением я -Ь Яр, причем % соответствует определенным валентным углам так, Я = / 2 и /З отвечает углам, образуемым атомом углерода и равным соответственно 180°, 120° и 109° 28. Имевшиеся к тому времени экспериментальные данные указывали на то, что угол НСН в этилене равен 116°, а следовательно, Я 1/2, что отличалось от результатов расчета Полинга, явившихся в свое время поддержкой концепции гибридизации. В квантовой химии вслед за Коулсоном корреляция между значением К и валентными углами была использована в основном для расчета первой величины, которая, как было уже отмечено, затем служила для оценки длин связей, образуемых атомом углерода. [c.89]

    Циклопропан формально является насыщенным соединением и казалось, что его описание можно было бы дать, используя обычный прием гибридизации, т. е. считать, что атомы циклопропанового кольца находятся в sp гибридизации. Однако угол между связями С—С в циклопропане составляет 60°, что резко отличается от величины 109°28, характерной для насыщенных соединений. Большое отклонение угла от нормального тетраэдрического значения вызывает появление значительного байеровского напряжения, составляющего для циклопропана 9,2 ккал на кажцую СНа-грунпу [710]. Химическим следствием этого является большая склонность циклопропанового кольца к раскрытию и расширению цикла. Длины связей С—С в циклопропане также несколько иные, чем в насыщенных соединениях (средняя длина связи С—С составляет 1,52 А., т. е. связь укорочена по сравнению с С—С насыщенными связями, средняя длина которых составляет 1,55 4). Углы связей НСН в циклопропане также отклоняются от тетраэдрического, составляя 116 , что ближе к углам меж11у связями НСН в этилене (120°) [710]. [c.106]


    Рассмотрим состояния атомов углерода трехчленных насыщенных гетероциклов. Сравнение геометрических параметров циклопропана и его гетероаналогов (табл. 6.1) указывает на значительные различия в состоянии атомов углерода цикла этих соединений. Длина связи С—Н в этилен-имине, окиси этилена и этиленсульфиде не превышает значения длины этой связи в этилене (1,086 А). В циклопропане она несколько больше, чем в этилене. Расстояния между двумя углеродными атомами в этиленими-не, окиси этилена и этиленсульфиде близки между собой и практически равны длине центральной связи С—С в бутадиене (1,483 А) в циклопропане эта связь значительно длиннее. Значение угла НСН в этиленимине, окиси этилена и этиленсульфиде весьма близко к значению соответствующего угла в этилене (117,5°). В циклопропане угол НСН значительно меньше, чем в этилене. [c.151]

    При этом происходило отщепление молекулы азота. В спектре удалось обнаружить полосы поглощения света с длиной волны 141,5 нм, исчезающие спустя доли секунды. Они не соответствовали ни самому диазометану, ни этилену — продукту сдваивания частиц СНг-Изучив эти спектры, а также спектры продуктов распада диазометана, содержащего дейтерий, Герцберг не только доказал факт существования кярбенов, но и ухитрился разузнать, как они устроены. Оказалось, что карбен — это палочка одна связь С—Н как бы продолжает другую. Изменив условия опытов, Герцберг поймал еще более эфемерную разновидность карбена — уголок , который поглощает свет в видимой и в инфракрасной области. Угол между связями С — И в нем равен 103°, т. е. близок к тому, который существует в насыщенных органических соединениях. Атом углерода в уголке имеет два электрона, спины которых противоположны, т. е. электроны эти спарены. При перестройке же его в сравнительно более устойчивую палочку спины становятся параллельными. Значит, палочка является дважды радикалом, бирадикалом. Как видите, скорострельная техника заставляет потрудиться, но зато позволяет узнать о невидимках довольно много. Впрочем, СНг— это особенно трудный случай. Для поимки других, более, устойчивых карбенов многолетних трудов не потребовалось. Ведь если время жизни СНг измеряется тысячными долями секунды, то СРг живет настолько долго (чуть ли не целые секунды), что одно время обсуждался вопрос, как его называть — то ли частицей, как СНг, то ли молекулой, как СО. Более важным, конечно, является не то, как называть дифтор-карбен, а то, что эта частица играет решающую роль во многих реакциях, имеющих чрезвычайное практическое значение. [c.186]

    Надо допустить на основании ряда соображений, что орбиты атома углерода обладают не только з- и р-характером, но в некоторой степени й- и /-характером тогда оба описания двойной связи не будут эквивалентными, как считали Холл и Леннард-Джонс, а описание при помощи двух изогнутых связей будет лучшим. 2. Такое описание кратных связей поразительным образом объясняет некоторые из их свойств [там же, стр. П] Полинг при этом ссылается на расчеты Хэллмана , который приняв для простой связи СС длину 1,54 А, нашел аналогично тому, как это делал Бернстейн (стр. 273), что длина двойной связи будет 1,32 А, а длина тройной — 1,18 А, в хорошем соответствии с опытом. 3. Согласно расчетам по этой модели угол между простой связью и двойной равен 125° 16, что в общем близко к экспериментальным данным, хотя сам этилен представляет явное исключение. 4. Остальные доводы относятся к расчету потенциальных барьеров вращения вокруг простых связей, примыкающих к кратным (к этому вопросу мы вернемся в следующей главе). В третье издание Природы химической связи (1960 г.) Полинг ввел уже представление об изогнутых связях [16, стр. 136 и сл.], которое отсутствовало в предыдущем издании (ср. [95, стр. 95 и сл.]). Две сравниваемые модели иллюстрируются следующими рисунками  [c.275]


Смотреть страницы где упоминается термин Этилен длины связей и углы: [c.374]    [c.402]    [c.89]    [c.580]    [c.261]   
Конфирмации органических молекул (1974) -- [ c.27 , c.216 ]




ПОИСК





Смотрите так же термины и статьи:

Длина связи

Угол связи



© 2025 chem21.info Реклама на сайте