Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Мембраны разность потенциалов

    Анионы раствора не влияют на величину разности электрических потенциалов, так как оии не проникают внутрь стекла. Необходимо отметить еще одну особенность стеклянного электрода. Если по обе стороны тонкой стеклянной мембраны (или пленки) находятся растворы с одинаковой концентрацией то в цепи IV мембранный потенциал должен быть равен нулю. Однако в этом случае всегда наблюдается скачок потенциала, который называется потенциалом асимметрии. Это означает, что на внутренней и внешней поверхностях стеклянного электрода возникают различные по величине потенциалы, что объясняется различием свойств внутренней и внешней поверхностей, возникающим, вероятно, при изготовлении электрода. Поэтому при измерении pH растворов стеклянным электродом необходимо учитывать потенциал асимметрии или определять pH по калибровочной кривой. Для уменьшения потенциала асимметрии стеклянные электроды длительное время выдерживают в воде или в растворе 0,1 и. H I. [c.578]


    Разность потенциалов между наружной и внутренней поверхностями клеточной мембраны (трансмембранный потенциал) обычно, в том числе и у нейронов в покое, устанавливается таким образом, что внутренняя часть клетки заряжена отрицательно относительно окружающей ее среды. Этот феномен называют поляризацией мембраны. Потенциал покоя нейрона составляет примерно —70 мВ. Он поддерживается благодаря [c.281]

    Можно, однако, осуществить процесс выравнивания концентраций равновесно или, по крайней мере, почти равновесно и заставить систему совершать работу за счет выравнивания концентраций. Это возможно, если располагать перегородкой (мембраной), проницаемой только для одного из компонентов (полупроницаемая мембрана). Практически можно приготовить мембрану, проницаемую для растворителя и непроницаемую для растворенного вещества. Для определенности будем далее рассматривать водные растворы и мембраны, проницаемые для воды. Рассмотрим раствор, находящийся в замкнутом объеме, отгороженном полупроницаемой мембраной, по другую сторону которой находится вода. В растворе химический потенциал воды ниже, чем в чистой воде, Поэтому вода начнет поступать в раствор. Из-за малой сжимаемости раствора возникнет давление на мембрану со стороны раствора. Если мембрана жестко зафиксирована, то это давление уравновесится сопротивлением мембраны. Разность давлений раствора и растворителя на полупроницаемую мембрану называется осмотическим давлением. [c.209]

    При повышении избирательности мембраны измеряемый концентрационный потенциал отклоняется от диффузионного, в соответствии с изменением чисел переноса Д в мембране. Наконец, при идеальной ионной избирательности мембраны концентрационный потенциал точно соответствует разности потенциалов между двумя растворами электролита, измеряемой при помощи обратимых электродов. Действительно, уравнение диффузионного потенциала [c.193]

    В этом дополнении к монографии рассматриваются только такие случаи, когда между стеклом и раствором распределяются лишь однозарядные ионы. В литературе обсуждаются и более сложные случаи распределения между рассматриваемыми фазами ионов разного по величине заряда. Недавно получены новые выражения для потенциала ионообменного электрода, в которых учитываются как межфазные разности потенциала, так и диффузионный потенциал внутри мембраны электрода для такого случая, когда между ионообменной мембраной и раствором распределяются одно- и двухзарядные ионы. Это уравнение можно записать следующим образом  [c.307]

    Эта электрическая цепь кроме мембранной разности потенциалов включает еще два электродных потенциала, определяемых уравнением Нернста (П. 74). Обычно принимают, что электродные потенциалы в цепи точно компенсируют друг друга. Так как мембранная разность потенциалов определяется разностью потенциалов Доннана с одной и другой стороны мембраны Гд и Яд (П1. 140), а химические потенциалы иона на мембране с обеих сторон одинаковы, то [c.174]


    Для измерения pH применяют электродные системы избирательного действия, ЭДС которых зависит от активности ионов водорода в анализируемом растворе. Это электродные системы со стеклянным индикаторным электродом и каломельным электродом сравнения. Потенциал стеклянного электрода является функцией pH анализируемой среды. Чувствительная часть стеклянного электрода изготовлена в виде стеклянной мембраны (шарика). Потенциал стеклянного электрода определяется измерением разности потенциалов между двумя сторонами мембраны, с одной стороны которой находится анализируемый раствор, а с другой — раствор с определенным значением pH. Определение pH воды высокой чистоты связано со значительными трудностями, так как в контакте с воздухом она может резко изменить свою характеристику, прежде всего за счет поглощения из воздуха оксида углерода или аммиака. С целью исключения этой помехи ВТИ разработана система измерения pH в лабораторных условиях, которая обеспечивает отсутствие загрязнения пробы углекислотой и другими газообразными примесями из атмосферы. Достигается это применением герметизированной проточной ячейки. [c.237]

    Сравнение экспериментально измеряемого потенциала с максимальной величиной, рассчитанной теоретически, позволяет оценить качество мембраны. Разность является мерой отклонения качества от идеального. [c.259]

    Ионоселективным называют электрод, потенциал которого определяется преимущественно активностью одного единственного иона и не зависит (или слабо зависит) от активности других мешающих ионов. Чувствительным элементом любого ИСЭ является селективная мембрана, разность электрических потенциалов по обе стороны которой в идеальном случае линейно зависит от логарифма активности определенного ионного компонента в соответствии с уравнением Нернста. По аналогии с известным рН-электродом электрод, селективный к иону А, называют рА-ИСЭ. [c.277]

    Как уже говорилось в гл. 6, разность потенциалов между внутренней и наружной сторонами плазматической мембраны - мембранный потенциал - зависит от распределения электрического заряда (разд. 6.4.15). Заряд переносят через мембрану нервной клетки малые неорганические ионы, главным образом Ка К СГ и Са , которые проходят через липидный бислой по специфическим ионоселективным каналам, образуемым специальными трансмембранными белками (разд. 6.4.14). При открытии и закрытии ионных каналов распределение заряда изменяется и происходит сдвиг мембранного потенциала. Таким образом, передача сигналов нервными клетками зависит от каналов с регулируемой проницаемостью. [c.295]

    Состав раствора с левой стороны мембраны сохраняется неизменным, диффузионный потенциал гро в системе (7.73) мал и тоже почти постоянен их можно поэтому объединить в константу. В нее же можно включить небольшую разность обусловлен- [c.175]

    При одинаковом составе растворов следует ожидать равенства Фс и фс. Однако поверхности стеклянной мембраны различны по своим свойствам, обусловленным главным образом механической, термической обработкой в процессе изготовления электрода. Разность фс и фс в этих условиях называется потенциалом асимметрии стеклянного электрода, является его индивидуальной характеристикой и входит в величину стандартного потенциала стеклянного электрода. [c.486]

    Условием равновесия между двумя растворами является равенство химических потенциалов растворителя в них при равной температуре и давлении. Это условие не распространяется на растворенное вещество вследствие наличия полупроницаемой мембраны. Растворение вещества приводит к снижению химического потенциала растворителя. Таким образом, в начальный момент времени химические потенциалы растворителя неодинаковы по обе стороны перегородки. В то же время химический потенциал есть функция температуры и давления. Поток молекул растворителя через мембрану со стороны чистого растворителя к раствору частично уменьшает концентрацию. Разность давлений, при которой прекращается переход, называют осмо- [c.49]

    Реальная полная мембранная разность потенциалов включает а себя еще диффузионный потенциал диф (внутри мембраны), обусловленный диффузией электролита через мембрану и разной подвижностью катиона и аниона  [c.175]

    Обычно стеклянный электрод изготовляют в виде шарика из тонкой мембраны, в который вводят хлорид-серебряный электрод и раствор соляной кислоты. Внешняя поверхность стекла соприкасается с исследуемым раствором. Потенциалы на каждой из поверхностей стеклянной мембраны обусловлены соответствующими реакциями обмена. Однако на одной из них (внутренней) он остается постоянным, а на другой (внешней) зависит от состава испытуемого раствора. Таким образом, потенциал стеклянного электрода представляет собой разность потенциалов между внутренней и внешней поверхностями мембраны. Если бы они были идентичными, то при использовании одного и того же раствора внутри шарика и с его внешней стороны эта разность должна быть равной нулю. В действительности же вследствие ряда причин появляется некоторая разность потенциалов, называемая потенциалом асимметрии и включаемая в величину его стандартного потенциала. Различия двух поверхностных слоев стеклянного электрода связаны с потерей щелочи при тепловой обработке стекла, дегидратацией поверхности при высушивании или продолжительной выдержке в дегидратирующем растворе, с механи-- [c.52]


    Разность потенциалов на клеточной мембране зависит от разности концентраций ионов во внутренней части клетки и в окружающей ее среде, а также от проницаемости мембраны. Мембранные потенциалы нервных и мышечных волокон в состоянии покоя составляют 60— 95 мВ. Формально мембранный потенциал подчиняется уравнению [c.139]

    Потенциал (ст.) недоступен измерению, но разность потенциалов между двумя растворами, расположенными с двух сторон стеклянной мембраны, может быть измерена. [c.160]

    Пусть растворы электролита различной концентрации разделены пористой перегородкой. Тогда диффузионный потенциал между растворами по обе стороны перегородки определяется уравнением (481), где и+ и представляют собой эффективные значения подвижности ионов в объеме перегородки. Пред-полож им теперь, что эта перегородка является полупроницаемой (мембрана), т. е. через нее могут проходить ионы только одного вида (катионы или анионы). Тогда разность потенциалов равна [c.320]

    Поскольку осмотическое равновесие устанавливается при неравномерном распределении ионов по обе стороны мембраны, в системе должна возникать разность электрических потенциалов между жидкостью внутри и снаружи осмотической ячейки (так называемый мембранный потенциал ), Эту разность потенциалов можно обнаружить, вводя, например, во внутреннюю и внешнюю жидкости осмометра одинаковые каломельные электроды. Зная распределение электролитов в системе, по уравнению Нернста можно вычислить разность потенциалов. Лёб показал, что значения разности потенциалов, вычисленные и найденные экспериментально, довольно хорошо совпадают. [c.475]

    Разность потенциалов, возникающая на мембране, определяется с помощью потенциометрической установки. Предварительно определяют потенциал асимметрии, образуя цепь из двух хлоросеребряных электродов, погруженных в раствор КС1 определенной концентрации без мембраны (можно в отдельном стакане) . Электроды должны показывать потенциал асимметрии не больше 0,5 мв. Потенциал асимметрии проверяется перед каждым опытом. [c.212]

    В общем случае помимо доннановой разности потенциалов необходимо учитывать возникающий внутри мембраны диффузионный потенциал, обусловленный различием в подвижностях катиона и аниона. Для расчета диффузионного потенциала используют уравнение ( 1.27), интегрирование которого проводят при предположении о постоянстве чисел переноса и коэффициентов активностей ионов внутри мембраны. [c.153]

    Биоэлектрохимия. Электрохимические закономерности лежат в основе переноса веществ через биологические мембраны. Это направление электрохимии интенсивно развивается в настоящее время и получило наименование биоэлектрохимия. Клеточные или плазменные мембраны отделяют внутреннюю часть клетки от окружающей среды. Состав растворов внутри и снаружи клеток различен, а сами мембраны обладают избирательной проницаемостью. Потенциал на клеточной мембране создается разностью концентраций ионов в клетке и в окружающей среде и зависит от проницаемости мембраны. Величина потенциала составляет для нервных и мышечных волокон в состоянии покоя 60—80 мВ и может быть определена по уравнению [c.158]

    Равенство произведений концентраций разнозаряженных ионов по обе стороны мембраны совпадает с равенством сумм концентраций (т. е. сумм числа ионов) только при отсутствии в клетке белка. Если. же в клетке содержится белок, то суммы концентраций ионов по обе стороны мембраны будут неодинаковы, что обусловит возникновение разности потенциала (мембранного потенциала). [c.357]

    Рассмотрим возликповение потенциала действия в однородном участке аксона. Так как на первом этапе деполяризации К-проводимость очень мала, считаем ионный ток суммой /к и тока утечки /у. Ток утечки выражается по закону Ома как разность потенциала гр и потенциала покоя гро, деленная на сопротивление мембраны  [c.375]

    Определив распределение концентрации ионов, можно из (7.38) найти распределение потенциала. Предварительно заметим, что общее падение потенциала складывается из падения в каналах диализата и концентрата плюс падение на мембране. Падение потенциала на мембране аналогично концентрационному перенапряжению на электроде и вызвано разностью концентраций ионов на поверхностях мембраны. Для катионообменной мембраны падение потенциала равно [c.148]

    Мембранный потенци> ал = разность потенци елоа между двумя сторонами мембраны [c.77]

    Наличие мембранной разности потенциалов позволяет измерять активности катно1юв и анионов в растворе. Если по одну сторону мембраны поместить стандартный раствор с активностью йо=1, а по другую сторону — исследуемый раствор с акгивностью а,, то идеальная мембранная разность потенциа-,1ов (при идеальной селективности мембраны) составит [c.211]

    Как видно, применение электродов серебро-хлористое серебро вместо каломельных удваивает разность потенциалов в случае катионо проницаемой мембраны, а в случае анионопровицае-мой мембраны разность потенциалов равна нулю. Разность потенциалов всегда равна нулю, когда потенциал электродов обратный по отношению к ионам, которые мигрируют через идеальную мембрану (в данном случае СГ). [c.136]

    Все каналообразующие белки и многие белки-переносчики позволяют растворенным веществам проходить через мембраны только пассивно ( с горки ). Этот процесс называется пассивным транспортом (или облегченной диффузией). Если молекула транспортируемого вещества не имеет заряда, то направление пассивного транспорта определяется только разностью концентраций этого вещества по обеим сторонам мембраны (градиентом концентрации). Однако если молекула заряжена, то на ее транспорт влияют как градиеш концентрации, так и разница электрических потенциалов на сторонах мембраны (мембранный потенциал). Вместе концентрационный и электрический градиенты составляют электрохимический градиент. Фактически в любой плазматической мембране есть градиент электрического поля. При этом внутренняя сторона мембраны обычно заряжена отрицательно по отнощению к наружной (см. разд. 6.4.15). Такой потенциал облегчает проникновение в клетку положительно заряженных ионов, но препятствует прохождению внутрь ионов, заряженных отрипательно. [c.382]

    Качественная картина распространения потенциала действия по нерву хорошо известна из курса физиологии (рис. 64). Возбуждение нерва в каком-то участке (х = О на рис. 64) приводит к деполяризации нервной мембраны внутриклеточный потенциал увеличивается по сравнению с потенциалом покоя на некоторую величину V (при. V = О примем V = 1 о). Под действием разности потенциалов между участком в области возбуждения и соседним невозбужденным участком (с координатой х) в аксоплазме начинает протекать ток 1 . Это в свою очередь приводит к снижению потенциала на мембране на величину V, кото- рая зависит от х. Если деполяризация V в данной точке х окажется значительной (V > V,, порога возбуждения), произойдет возбуждение мембраны в этом месте й т. д. [c.169]

    На обеих границах стеклянной мембраны с растворами (внутренним, постоянным раствором, и внешним, исследуемым раствором) устанавливаются скачки потенциала, разность между которыми называется потенциалом стек.чянного электрода ф .  [c.114]

    При изучении самопроизвольно протекающих процессов необходимо наряду с химическими потенциалами учитывать разность электрических потенциалов, поэтому для ионных систем часто используют понятие электрохимический потенциал, который включает в себя обе составляющие термодинамического потенциала. Для случая мембраны, по обе стороны которой находятся растворы электролита, отличающие1Ся только концентрацией, электрический и химический потенциалы равны и противоположны по знаку  [c.321]

    Вначале мы обратим свое внимание на правую ветвь кривой рис. 33, т. е. на кривую падения величины -потенциала в области относительно больших размеров пор коллодиевых мембран. Причиной такого уменьшения величины V// и -потенциала можно предполагать гетеропористость мембран. Если бы коллодиевые мембраны или любые другие были гомеопористыми, т. е. содержали поры только одного размера, то, двигаясь в сторону увеличения сечения пор, мы должны были дойти до такой области, для которой при данном градиенте потенциала нельзя достичь стационарного лотока жидкости по всему сечению капилляров, и величина Vjl, а с ней и вычисленный -потенциал обращаются в нуль. Однако всякая реальная мембрана —это мембрана гетеропористая, т. е. содержащая поры различного размера и характеризующаяся кривой распределения пор по размерам. Увеличение среднего радиуса пор мембраны такого типа должно привести к положению, когда в наиболее крупных капиллярах при данном градиенте потенциала движущая электрическая сила окажется недостаточной для достижения стационарного потока, и электроосмотический перенос в таких крупных порах будет отсутствовать. В то же время движение ионов по сечению капилляров под влиянием приложенной разности потенциалов будет происходить, и, следовательно, сила тока в цепи не будет уменьшаться, а уменьшится объем перенесенной жидкости, что должно привести к общему уменьшению величины Vjl, а с ним и вычисляемого значения -потенциала. Такое уменьшение Vjl должно происходить, очевидно, пропорционально отношению площади крупных капилляров, где отсутствует электроосмотическое течение лсидкости, к общей площади сечения капилляров мембраны. [c.61]


Смотреть страницы где упоминается термин Мембраны разность потенциалов: [c.253]    [c.217]    [c.307]    [c.217]    [c.3]    [c.133]    [c.175]    [c.43]    [c.52]    [c.219]    [c.317]    [c.221]    [c.221]   
Биохимия Том 3 (1980) -- [ c.357 ]




ПОИСК





Смотрите так же термины и статьи:

Потенциалы разность



© 2025 chem21.info Реклама на сайте