Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ионофоры катионная активность

    Все эти примеры служат иллюстрацией пассивного, но стереоселективного переноса, когда органические модельные системы осуществляют асимметричное узнавание. Однако можно провести аналогию между этими результатами и процессом опосредованного переноса через биологические мембраны. Все липидные мембраны практически непроницаемы для внутриклеточных белков и высокозаряженных органических и неорганических ионов, находящихся с обеих сторон мембраны. Диффузия Na+ через клеточную мембрану из клетки и К+ в клетку происходит в направлении отрицательного градиента химического потенциала и называется пассивным переносом. Пассивный перенос ионов через мембраны может быть вызван ионофорами [см. разд. 5.1.3]. К счастью, концентрации катионов по обе стороны мембраны различные, и такое состояние поддерживается активным переносом, который зависит от метаболической энергии. Механизм этого процесса известен под названием натриевый насос, функция которого сводится к поддержанию высокой внутриклеточной концентрации К+ и низкой концентрации Na+. Кальций, по-внднмому, также активно выводится из клеток. В этих случаях энергия для переноса обеспечивается за счет гидролиза АТР. Однако диффузия сахаров и аминокислот к важнейшим клеточным объектам — пример простого опосредованного пассивного переноса. [c.282]


    Селективность хелатообразования таких электрически нейтральных реагентов с катионами в полной мере можно использовать в мембранах, селективность которых к различным катионам с одинаковым зарядом будет определяться константой устойчивости комплексов, образуемых определяемым ионом и электро-нейтральным реагентом. Подробное изучение связи между селективностью и структурой нейтральных ионофоров привело к созданию целой серии синтетических лигандов, применение которых в качестве электродно-активных компонентов мембран ионоселективных электродов позволило создать датчики, отличающиеся высокой селективностью к определенным ионам. [c.100]

    Первоначально в качестве электродно-активных компонентов жидкостных мембранных электродов, селективных к однозарядным ионам, использовали макроциклические природные и синтетические нейтральные переносчики, образующие, как правило, комплексы с отношением лиганд — катион 1 1 (по крайней мере те из них, которые находят применение в ионометрии). Основным свойством этих соединений как переносчиков ионов является способность образовывать структуру с липофильной оболочкой и полярной внутренней поверхностью (полостью), как это наблюдается для структуры валиномицина, изображенной на рис. 7.4. Внутренняя полость ионофора должна иметь менее 12, а предпочтительно 5—8 координационных центров. Структура образующегося комплекса должна быть достаточно жесткой, что достигается за счет ее усиления внутримолекулярными водородными связями. Однако жесткость структуры не должна быть слишком большой, так как в противном случае ионный обмен будет происходить с недостаточной скоростью [153, 186]. [c.208]

    Ионы щелочных металлов (Na , К )- Натрий распределен в основном снаружи, а калий - внутри клетки. Оба катиона вносят вклад в поддержание осмотического давления, передачу нервных импульсов, активный перенос сахаридов и аминокислот. Катионы Na" " и К , представляющие собой сильные кислоты, образуют комплексы с лигандами, содержащими донорные атомы кислорода (эти лиганды являются сильными основаниями). Но в живых системах эти ионы переносятся свободно, поскольку in vivo взаимодействие ионов с лигандами сравнительно слабое. Роль антибиотиков-ионофоров в активном переносе ионов через клеточные мембраны, например, в избирательном переносе натрия и калия при возбуждении мембран нервных клеток или [c.269]


    Антибиотики 222 и 223, так же как и многие другие природные ионофоры, по характеру связьгеания катиона и по определяющему этот характер типу структуры подобны краун-эфирам. Действительно, открытие краун-эфиров дало в руки исследователей долгожданные искусствение модели для изучения селективности связывания катионов и их эффективного межфазного переноса из воды в органический растворитель (или в липофильную мембрану). Поэтому неудивительно, что открытие Педерсена сразу же было воспринято как прорыв в понимании биологического явления трансмембранного переноса ионов. Уже через несколько месяцев многочисленные исследования были направлены на дизайн искусственных мультидентатных комплексонов как моделей для изучения механизма действия природных ионофоров и связи их активности со структурой. Конечная цель таких исследований — создание искусственных аналогов природных соединений с перспективой их применения в медицине. [c.474]

    Точное знание равновесия диссоциации ионофоров необходимо для исследования влияния образования ионных пар на реакционную способность нуклеофилов-анионов. Хотя Экри и его сотрудники провели обширные исследования по этому вопросу 50 лет назад [47], в последние годы ему уделяется мало внимания, несмотря на большое потенциальное значение этого влияния как для теоретической, так и для синтетической органической химии. Это могло произойти потому, что различие в реакционных способностях свободных и спаренных ионов в большинстве систем мало заметно и для его выявления требуется постановка тщательных экспериментов. Одно такое исследование по влиянию образования ионных пар на нуклеофильную реакционную способность бром-иона в растворах жидкого SO2 с применением кинетики обмена радиоактивного брома между несколькими ионофорными бромидами и я-нитробензилбромидом уже упоминалось [46]. Эту проблему трудно решить однозначно по двум причинам. Одна из них та, что в принципе очень трудно, хотя и не невозможно [46], различить влияние образования ионных пар на реакционную способность аниона, представляемую уравнением (7), и на реакционную способность в том случае, когда свободный анион является активным нуклеофилом, а свободный катион служит катализатором [уравнение (8)]. [c.77]

    Первонач ально на основании зависимости между структурой и активностью неправильно полагали, что валиномицин взаимодействует с уже существующими высокоселективными транспортными рецепторами в митохондриях [8]. Однако опытным путем было обнаружено, что валиномициновая группа ионофоро увеличивает катионную проницаемость искусственных липидных бимолекулярных слоев на основании этого пришли к заключению, что транспортная активность и ион-селективность внутренне присущи самим молекулам валиномицина [14, 15]. В результате детального исследования установили, что валиномицин обладает комплексообразующими свойствами по отношению к ионам щелочных металлов и транспортной активностью в обычном состоянии, из чего в конечном счете заключили, что способность ионофоров служить мобильными носителями ионов обусловлена их собственными свойствами [1, 16—19]. [c.247]

    Ионофоры — это лиганды, способные образовывать ион-диполь-ные комплексы с катионами посредством соответствующим образом повернутых атомов кислорода, равномерно встроенных в их циклический молекулярный остов. Нейтральные ионофоры — типичные циклические ковалентные соединения, кольца которых включают от 18 до 40 атомов. Кольца обычно содержат повторяющиеся субъединицы с регулярным чередованием центров оптической асимметрии. Валиномицин и энниатин — депсипептиды, кольца которых вдержат чередующиеся амидные и сложноэфирные группы. Повторяющиеся единицы макротетралидных актинов [28] соединены между собой исключительно сложноэфирными связями. Несколько соединений, подобных по активности ионофорам, содержат только пептидные связи, хотя, например, грамицидин не является ковалентным циклическим соединением [29] и не образует высоколипофильных катионных комплексов. Синтетические полиэфиры, короны [30], еще более инертны и содержат в молекулярном остове только эфирные атомы кислорода. [c.248]

    Макротетралиды — активные ионофоры, используемые в качестве инструмента при изучении проницаемости искусственных и естественных мембран. Специфическая структура этих соединений определяет их способность образовывать комплексы с рядом однозарядных катионов аммонием, калием, натрием, таллием, рубидием, цезием при большой избирательности к ионам аммония. [c.284]

    Наиболее яркие достижения современной мембранологии связаны с применением антибиотиков, избирательно увличивающих катионную проницаемость биологических мембран. Было установлено, что биологическая активность этих соединений, называемых ионофорами, или мембраноактивными комплексонами, обусловлена их способностью индуцировать транспорт ионов через мембраны. [c.80]


Смотреть страницы где упоминается термин Ионофоры катионная активность: [c.474]    [c.302]    [c.77]    [c.221]    [c.256]    [c.259]    [c.102]    [c.220]   
Неорганическая биохимия Т 1 _2 (1978) -- [ c.259 , c.262 ]




ПОИСК





Смотрите так же термины и статьи:

Ионофоры



© 2025 chem21.info Реклама на сайте