Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Важнейшие особенности клеточного метаболизма

    Основу структурной организации живого составляют макромолекулы, прежде всего важнейшие биополимеры — белки и нуклеиновые кислоты. Специфика полимерных молекул в отличие от малых молекул определяется большим числом однотипных звеньев (мономеры), связанных в линейную цепь. Тепловое движение входяш их в полимерную цепь атомов и атомных групп, повороты и враш ение их вокруг единичных связей обусловливают большое число внутренних степеней свободы макромолекулы. Это заставляет рассматривать макромолекулы как макроскопическую систему, статистический характер поведения которой проявляется в наличии средних значений таких параметров, как размеры, форма, степень, свернутости макромолекулы. Вместе с тем суш ествуюш ие между атомами химические связи и взаимодействии ближнего и дальнего порядка накладывают определенные ограничения на число возможных конформаций макромолекул. Изменение конформации биополимеров, происходяш ие в процессах клеточного метаболизма и трансформации энергии, также носят вполне определенный характер и отражают внутримолекулярную динамическую организацию биополимеров. Таким образом, своеобразие биологической макромолекулы как физического объекта заключается в тесном сочетании статистических и детерминистских (механических) особенностей ее поведения с одной стороны, большое число взаимодействуюш их атомов и внутримолекулярных степеней свободы и, как следствие, возможность осуш ествления огромного числа разных конформаций, с другой — определенный химический характер и конформационные изменения при функционировании биополимеров. [c.168]


    Еще одним важным обстоятельством, накладывающим определенный отпечаток не только на энергетический обмен, но и на многие другие стороны метаболизма нервной ткани, является совершенно необычное для большинства других типов клеток соотношение между поверхностью и объемом центральной ч. к ти клетки. Например, для мотонейронов коры кошки средние размеры тела клетки составляют около 50мкм,вто время как длина аксона — до 10 —10 мкм. Подобные особенности структуры клеток нервной системы объясняют причины отмеченных многими исследователями значительных энергетических затрат на транспортные нужды клетки. В первую очередь необходимо упомянуть трансмембранный перенос субстратов, медиаторов, различных предшественников под действием специфических транслоказ или в результате конформационных перестроек клеточной мембраны. Например, установлено, что на долю пассивной диффузии такого важного энергетического субстрата, как глюкоза, приходится не более 57о, подавляющая масса ее переносится через гемато-энцефалический барьер со значительными затратами энергии и с участием К Na+-ATФaзы. [c.73]

    ВАЖНЕЙШИЕ ОСОБЕННОСТИ КЛЕТОЧНОГО МЕТАБОЛИЗМА [c.13]

    Участие биогенных аминов в системе клеточной регуляции.. Учитывая высокую биологическую активность аминов, можно ожидать, что увеличение их содержания в клетках и тканях под влиянием введенных радиопротекторов воздействует не только на процессы окисления липидов, но и на другие стороны метаболизма, роль которых в создании радиорезистентности организма еще предстоит установить. В связи с этим особенно важным представляется исследование способности биогенных аминов влиять на  [c.294]

    Эти липидные бислои не очень проницаемы для различных молекул. Тем не менее, чтобы происходил метаболизм и рост клетки, такие молекулы, как сахара и аминокислоты, должны проникать в клетку. Специфический транспорт этого типа выполняется белками, которые находятся внутри бислойной мембраны. Белки выполняют роль переносчика, и этот тип транспорта может быть определен как транспорт с переносчиком. Клеточные мембраны состоят из двух основных компонентов липидного бислоя, который является основой, и белков, выполняющих специфические транспортные функции. Некоторые из белков локализованы на поверхности бислоя (поверхностные белки), в то время как другие белки (внутренние белки) полностью пронизывают липидный бислой. Внутренние белки играют особенно важную роль в транспортных функциях. [c.80]


    Технологическую основу БТС составляет процесс культивирования микроорганизмов — ферментация. При этом биофаза потребляет продукты питания — минеральную питательную среду и субстрат, перерабатывает их клеткой и выделяет в среду метаболиты. В результате обмена веществ происходит синтез внутриклеточных веществ, рост клетки (увеличение биомассы) и ее развитие (морфологические и физиологические изменения). Рост и развитие популяции микроорганизмов являются результатом сложнейшей совокупности физиологических, биохимических, генетических и других внутриклеточных процессов. Кроме того, важное место занимают процессы физической природы — перенос массы, энергии, количества движения из окружающей среды к клеткам и обратно. Таким образом, процесс ферментации можно рассматривать как определенным образом организованное развитие популяции микроорганизмов во взаимодействии с окружающей средой (ферментационной средой). Ферментационная среда, содержащая микробные клетки, компоненты минерального питания, субстрат, продукты клеточного метаболизма представляет собой многофазную систему, в которой протекают физиолого-биохимические и физико-химиче-ские процессы. К особенности данной среды относится сложный характер взаимодействий между ее составляющими. [c.51]

    В главах 12—15 освещаются вопросы обмена жизненно необходимых соединений, аминокислот, белков, углеводов, липидов, воды и минеральных веществ. В главе 12рассмотрен обмен белков и аминокислот, занимающий особое место в процессах метаболизма, что связано с уникальными биологическими функциями белков и специфической ролью аминокислот как основных источников азота для организмов человека и животных. Обмен углеводов обсуждается в главе 13. Известно, что углеводы занимают первое место среди веществ, служащих в качестве источника энергии для организма, а кроме того, они выполняют ряд других важных биологических функций. Обмен липидов описан в главе 14, особое внимание уделяется ряду специфических особенностей их метаболизма, связанных с химическим строением. Глава 15 посвящена рассмотрению процессов водно-минерального обмена и транспорта биологически активных соединений через клеточные мембраны, благодаря этим процессам поддерживается постоянство состава внутри- и внеклеточных жидкостей организма. [c.310]

    Исходя из сравнения последовательностей нулеотидов рибосомной РПК можно предположить, что в ходе эволюции эукариот дивергенция растений, дрожжей, беспозвоночных и позвоночньгх происходила относительно поздно (см. рис. 1-16). По-видимому, различия межд> растениями и животными накапливались примерно 600 млн. лет, и большая часть этих различий может быть сведена к двум важнейшим особенностям, приобретенным предками растений способности связывать двуокись углерода в процессе фотосинтеза (см. гл. 7) и наличию жесткой клеточной стенки. Первое свойство дало растениям возможность самостоятельно создавать органические соединения, необходимые для их роста и метаболизма второе свойство наложило жесткие ограничения на все поведение растений. В данной главе будут рассмотрены те особенности растительных клеток, которые определяются этими двумя свойствами. [c.382]

    Твердые культуры относительно свободны от мак-ромолекулярных компонентов и полностью свободны от частиц питательной среды, так как последние обычно находятся внутри агарового геля. Более того, твердые культуры относительно свободны от низкомолекулярных питательных веществ и продуктов метаболизма микроорганизмов, поскольку для их растворения необходимы значительно большие объемы среды. Следовательно, культуры, выращенные на твердой среде, особенно полезны для приготовления антигенов или для других целей, когда важна чистота клеточной суспензии. [c.363]

    Важной особенностью метаболизма бактерий при дефиците аминокислот является изменение скорости распада клеточных белков. У штаммов Е. соИ дикого типа (RelA ) скорость протеолиза в этих условиях коррелирует с содержанием ффГфф в клетках и снижается одновременно с уменьшением концентрации гуанозинтетрафосфата. В 1 е1А -клетках скорость протеолиза не меняется. [c.31]

    Эти результаты свидетельствуют о том, что стимулирующий гуморальный фактор, вырабатываемый клетками костного мозга, не является регулятором общего клеточного метаболизма, а представляет собой субстанцию, действующую избирательно на синтез иммуноглобулинов и особенно на синтез специфических антител. Все это подчеркивает важную роль клеточной кооперации на уровне зрелых антителопродуцентов в развитии иммунного ответа и необходимость ее дальнейшего изучения. [c.200]


    Этому в значительной степени способствовали работы Бейт-Смита по разработке методов бумажной хроматографии фенольных соединений, показавшие, что большое число простых фенолов широко распространено в растительном мире. Кроме того, было обнаружено, что микроколичества некоторых фенольных соединений содержатся в наиболее важных органах животных, таких, как нервные ткани и мозг. Метод меченых атомов с использованием изотопа С позволил изучить биосинтез фенолов и показать, что фенолы являются активными метаболитами, а не конечными продуктами клеточного обмена. Эти данные свидетельствуют об исключительно важной биологической роли фенольных соединений. В книге по возможности всесторонне излагаются основные биохимические аспекты изучения фенолов. Рассматриваются все природные соединения, имеюш,ие свободную или связанную гидроксильную группу в ароматическом кольце рассматриваются природные фенолы, содержащие флавопоидную группировку, а также ряд других фенолов, особенно таких, которые имеют азотсодержащие функциональные группы. Некоторые основы химии соединений фенольного ряда, методы их идентификации в биологических объектах приводятся в первых главах. Распределение, таксономическое значение, генетика, метаболизм, биосинтез, энзимология, а также функции фенолов в животном и растительном мире рассмотрены в последующих главах. В книге особенно акцентируется вопрос о необходимости дальнейшего изучения потенциально важной роли фенольных соединений в живых организмах. [c.8]

    Связанные с мембраной детекторы , вероятно, также способны изменять скорость синтеза осмотически активных веществ в цитоплазме и вакуоли, но эти изменения происходят гораздо медленнее. Системы, регулирующие величину клеточного тургора, особенно важны для растений, обитающих в среде с экстремальными или непостоянными осмотическими свойствами. Например, растения, произрастающие на засоленных почвах, для поддержания тургора должны накапливать в своих жидкостях очень высокие концентрации растворенных веществ. Поскольку накопление ионов, например К . в таких больщих количествах, вероятно, повлияло бы на активность жизненно важных ферментов, клетки этих растений накапливают специальные органические вещества-полигидроксилированные соединения, такие как глицерол или маннитол, аминокислоты, например пролин. или же К-метилированные производные аминокислот, такие как глицинбетаин. Концентрация этих веществ в цитозоле может достигать очень высоких уровней (0,5 М), не влияя на метаболизм клетки. Вакуоль и ее содержимое самым непосредственным образом участвуют в регуляции тургорного давления в ответ на изменения окружающей среды (см. разд. 20.4.2). [c.391]

    Витамин D (кальциферол) и другие стероиды. Грибы, у которых особенно широко развит обмен терпенов, известны как обильный источник стероидов, занимающих важное место в их метаболизме как конструктивный элемент клеточных мембран хитинообразующих грибов, организующий у них функции проницаемости. Вероятно, они несут также ряд побочных функций. [c.142]


Смотреть страницы где упоминается термин Важнейшие особенности клеточного метаболизма: [c.741]    [c.18]    [c.148]    [c.148]    [c.46]   
Смотреть главы в:

Стратегия биохимической адаптации -> Важнейшие особенности клеточного метаболизма




ПОИСК





Смотрите так же термины и статьи:

Метаболизм



© 2025 chem21.info Реклама на сайте