Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Вязкость газов жидкостей

    Молекулярно-кинетическая теория также позволяет делать предсказания относительно диффузии, вязкости и теплопроводности газов, т.е. так называемых транспортных свойств, проявляющихся в явлениях переноса. Каждое из этих явлений может условно рассматриваться как диффузия (перенос) некоторого. молекулярного свойства в направлении его градиента. При диффузии газа происходит перенос его массы от областей с высокими концентрациями к областям с низкими концентрациями, т.е. в направлении, обратном градиенту концентрации. Вязкость газов или жидкостей (иногда их обобщенно называют флюидами) обусловлена диффузией молекул из медленно движущихся слоев в быстро движущиеся слои флюида (и их торможением) и одновременной диффузией быстро движущихся молекул в медленно движущиеся слои (и их ускорением). При этом происходит перенос механического импульса в направлении, противоположном градиенту скорости движения флюида. Теплопроводность представляет собой результат проникновения молекул с большими скоростями беспорядочного движения в области с малыми скоростями беспорядочного движения молекул. Ее можно описывать как перенос кинетической энергии в направлении, противоположном градиенту температуры. Во всех трех случаях молекулярно-кинетическая теория позволяет установить коэффициент диффузии соответствующего свойства и дает наилучшие результаты при низких давлениях газа и высоких температурах. Именно эти условия лучше всего соответствуют возможности применения простого уравнения состояния идеального газа. [c.150]


    А — вязкость газа (жидкости) [c.617]

    В связи с этим основное внимание обращено на случаи, когда фаза 1 является газообразной, однако будут рассмотрены и некоторые случаи твердых фаз (разделы 4.4, 5.4 и 10.3). Системы жидкость— жидкость (раздел 15.2) могут быть рассмотрены либо по аналогии с системами газ — жидкость, либо как аналоги системы жидкость —твердое тело, в зависимости от соотношения вязкостей фаз 1 и 2. [c.14]

    Трактовка рассматриваемых явлений на основе прямого анализа системы дифференциальных уравнений, описывающих конвективную массоотдачу в системах твердая стенка—жидкость и газ—жидкость, дается теорией пограничного диффузионного слоя В этой теории учитывается сложность структуры турбулентности внутри вязкого подслоя, прилегающего непосредственно к поверхности раздела фаз. Весьма существенной является постепенность затухания турбулентных пульсаций в подслое. Вследствие этого, поскольку в жидкостях величина коэффициента молекулярной ди(М)узии Оа обычно во много раз меньше величины кинематической вязкости V (v/Dд > 1), турбулентные пульсации, несмотря на их затухание, играют существенную роль в переносе массы почти до самой границы фаз. Пренебречь их влиянием можно лишь в пределах подслоя, названного диффузионным , толщина которого в жидкостях значительно меньше толщины вязкого подслоя. В пределах этого диффузионного подслоя преобладающим является перенос молекулярной диффузией. [c.101]

    Как правило, растворитель существенно влияет на люминесценцию растворов неорганических и органических веществ. Чем сильнее выражена сольватация, тем вероятнее перенос энергии на другие молекулы и тем больше возможность проявления эффекта. тушения. Усиление сольватации приводит к смещению люминесценции в длинноволновую область. Выход флуоресценции часто оказывается более высоким в растворителе с повышенной вязкостью, так как в этом случае уменьшается число соударений активированных частиц. Если учесть большие различия в вязкости газов, жидкостей и твердых тел, то можно понять, почему газы в большинстве случаев не проявляют фосфоресценции, а период [c.96]

    Наконец, можно отметить еще одну проблему, возникающую при использовании феноменологического подхода к нахождению закономерностей изменения наблюдаемых величин в пространстве и во времени. Она заключается в том, что в рамках этого подхода не удается вывести формулы, описывающие зависимости коэффициентов, входящих в феноменологические соотношения, от параметров, характеризующих элементы макросистемы и их взаимодействие (таких, например, как масса частиц, их размер и т. п.). В связи с этим численные значения коэффициентов приходится определять не с помощью какой-либо общей формулы, а экспериментально для каждой конкретной физической ситуации. Это несомненно осложняет задачу нахождения численных значений коэффициентов, необходимых для инженерных расчетов. Примерами таких коэффициентов являются коэффициент молекулярной диффузии Вт, зависящий от размеров молекул диффундирующего компонента, среднеквадратичной скорости теплового движения молекул и т. п. коэффициент продольного перемешивания частиц твердой фазы в псевдоожиженном слое, зависящий, в частности, от размеров этих частиц динамический коэффициент вязкости газа (жидкости), зависящий от массы молекулы и ряда параметров, характеризующих межмолекулярное взаимодействие. [c.12]


    При высоких скоростях истечения капли начинают коалесцировать в непосредственной близости от сопла и при дальнейшем увеличении расхода из сопла начинает вытекать сплошная струя жидкости, которая вследствие возникающих на ее поверхности возмущений дробится на капли. Переход к струйному истечению в системах жидкость—жидкость и жидкость—газ более ярко выражен, чем в системах газ—жидкость и происходит при вполне определенной скорости истечения. Для жидкостей с нормальной вязкостью эту скорость можно определить из соотношения, полученного в работе [89]  [c.57]

    Критерий Л = 1р/р,н< характеризует отношение сил вязкости охлаждаемого газа к силам вязкости распыливаемой жидкости. [c.86]

    Однако при пропускании газа через слой жидкости происходит более сложное взаимодействие сил, чем в системе газ — твердое [184]. Для принципиального разбора явления можно считать в первом приближении, что в системе газ — жидкость взаимодействуют пять основных определяюпщх сил. При этом сила трения газа о жидкость и архимедова сила являются подъемными силами, т. е. они стремятся оторвать жидкость от опоры (решетки) им противодействуют сила тяжести жидкости, внутреннее трение жидкости (вязкость) и поверхностное натяжение. [c.13]

    Гильденблат И. А.. Родионов А. И.. Демченко Б. И.. ДАН СССР, 198, 1149 (1971). О влиянии молекулярной диффузии на интенсивность массообмена во взаимодействующих с газами жидкостях с различными поверхностными натяжениями и вязкостями. [c.269]

    На рис. 4.2 показаны зависимости глубины пропитки торфа растворами ПАВ от времени. Линейность графиков /г(Ут) в начальный период свидетельствует о том, что в ходе пропитки остаются постоянными значения поверхностного натяжения на границе жидкость — газ, вязкость смачивающей жидкости, краевой угол и эффективный радиус пор в торфе. Скорость же процесса, характеризуемая величиной коэффициента впитывания К, интенсивно возрастает с увеличением концентрации растворов АПАВ и НПАВ. Однако этот рост прекращается при концентрации растворов АПАВ и НПАВ, близкой к выходу на плато изотерм адсорбции (С=1—2%) [227]. Кроме того, следует также обратить внимание на отклонение от линейности графиков Л(Ут) с течением времени. Это явление, связанное с адсорбцией [c.70]

    Газ 0 л-атМ Моль ч Л, см - моль" по уравнению Ван-лер-Ваальса" по вязкости газа по плотности жидкости ИЛИд кристалла [c.154]

    Вязкость — свойство жидкости (газа) оказывать сопротивление перемещению под действием внешних сил одной части жидкости (газа) относительно другой. [c.52]

    По последовательности операций ФЖХ похожа на обычную ГЖХ. В приборе устанавливается нужный газовый поток, в хроматографическую колонку вводится проба исследуемой смеси и выходящие из колонки компоненты смеси детектируются или собираются. Работа ведется на насадочных колонках, при этом возможно применять весьма тонкодисперсный набивочный материал, так как газы, сжатые даже до высокого давления, имеют более низкую вязкость, чем жидкости, применяемые в жидкостной хроматографии. В табл. 57 дано сравнение некоторых физических свойств подвижных фаз, используемых в различных методах хроматографии. [c.93]

    В системе СГС единицей кинематической вязкости является стокс (Ст), равный 1 см /с, а единица, в 100 раз меньшая, называется сантистоксом (сСт). С повышением температуры вязкость капельных жидкостей уменьшается, а газов увеличивается. Давление оказывает незначительное влияние на величину вязкости п обычно может пе приниматься во внимание. [c.30]

    С позиции молекулярной физики свойства газов, жидкостей и твердых тел можно подразделить на две группы равновесные свойства (например, описываемые уравнением состояния, или описываемые коэффициентами поверхностного натяжения и Джоуля - Томсона) и неравновесные (такие, как вязкость, диффузия и теплопроводность). Выражение для всех макросвойств через молекулярные величины и межмолекулярные силы может быть получено из статистической механики, позволяющей также предсказать значения многих физических величин, для которых отсутствуют экспериментальные данные. [c.28]

    В табл. 8 приведены данные по шкале турбулентности, размерам наименьших вихрей и минимальному времени смешения для двуокиси углерода, диффундирующей в турбулентно движущиеся газы и жидкости при 1 ama и 15 С. Как следует из табл. 8, несмотря на разницу в значениях кинематической вязкости газов и жидкостей, размеры наименьших вихрей в них сравнимы. Однако вследствие более низких значений коэффициентов молекулярной диффузии в жидкостях время смешения в них больше, чем при диффузии в газы. [c.121]

    ПЛОТНОСТИ газа и жидкости, вязкости газа.  [c.93]

    От вязкости газа зависит величина потерь давления в газопроводе. С повышением температуры увеличивается вязкость газа и следовательно, сопротивление движению нагретого газового потока. И, наоборот, вязкость жидкости с увеличением температуры уменьшается, что имеет существенное значение при перекачке СПГ. [c.34]


    Решением системы дифференциальных уравнений найдены радиальные и тангенциальные компоненты скорости движения испаряющихся капель и их радиаль юго перемещения при известных внешних условиях скорость воздуха (газа) на входе камеры Овх, начальный диаметр капли dкo параметры газа-п-плоносителя (гемпература ( , плотность Рв, теплопроводность вязкость и жидкости (теплота испарения г, плотность р , температура поверхности С ). Дополнительным условием при решении системы уравнений была зависимость = 1( ), полученная при а.зродинамических исследованиях. Эта зависимость имеет вид  [c.178]

    Номограммы для определения динамического коэффициента вязкости некоторых жидкостей II газов приведены на рнс. 1-2 и 1-3. [c.358]

    Вязкость капельных жидкостей с повышением температуры уменьшается, вязкость газов увеличивается. Изменение вязкости в зависимости от давления незначительно и обычно не учитывается (исключая область весьма-высоких давлений). [c.127]

    Аг —критерий Архимеда [см. формулу (6-46)], рассчитанный по эквивалентному диаметру насадки и вязкости газа и WjK — массовые скорости газа и жидкости. [c.611]

    Практические занятия - 8ч. Примеры вычисления вязкости газов и жидкостей ПРИ различных параметрах. Решение задач. Контрольная работа - 2ч. [c.367]

    Выражения (1.61), (1.62) не удовлетворяют гранитаому условию (1.17) на поверхности пузыря. Пренебрегая плотностью и вязкостью газа по сравнению с плотностью и вязкостью жидкости, условие (1.17) можно записать в виде  [c.16]

    Коэффициент теплоотдачи зависит от формы теплоприемника, размеров поверхности нагрева или теплоотдачи, температуры тепло>-носителя и теплоприемника скоростей движения теплоносителя, коэффициента теплопроводности газа, жидкости, теплоемкости тег плоносителя, вязкости газов и т. д. [c.27]

    Кроме тою, из механических свойств элементарных вен ,ести сушественное значение имеет н я з к о с т ь, характеризующая внутреннее трение вещества, возникающее прн перемещении одного слоя его относительно другого. Различают вязкость кинематическую и абсолютную динамическую. Кинематическую вязкость измеряют в квадратных метрах на секунду или в квад-р ииы сантиметрах на секунду. Абсолютная динамическая вязкость равна произведению кинематической вязкости иа плотность единицей измерения ди-Егамической ряакости является паскаль секунда. Вязкость веществ существенно за1И10ИТ от томперату )Ы, причем вязкость газов с повышением температуры увеличивается, а вязкость жидкостей, наоборот, уменьшается. Вязкости различных элементарны. веществ в жидком состоянии довольно сильно отличаются друг от друга. [c.114]

    Мы считаем [187], что не следует дифференцировать гидравлическое сопротивление пенного слоя, можно установить непосредственную связь между этой величиной и количеством жидкости (в виде Ло), образуюпщм пену при разных скоростях газа и различных физических свойствах газа и жидкости. Опыты показали, что конструктивные параметры аппарата, а также размеры отверстий и свободное сечение решетки не оказывают определяющего влияния на АРсл- Несущественно также влияние скорости газа w ., вязкостей газа Vp и жидкости v , что находит подтверждение и в других работах [9, 357, 426]. Гидравлическое сопротивление слоя пены гфопор-ционально [187] высоте исходного слоя жидкости, ее плотности и поверхностному натяжению [c.63]

    В этих формулах Шопт — оптимальная скорость газа (пара), м/сек р — плотность газа (пара) при заданной температуре, кг/м р — плотность жидкости при заданной температуре, кг м — вязкость газа (пара) при заданной [c.688]

    Испытание на окисление 4L60, трансмиссия удовлетворительная работа в течение 300 ч чистота и состояние деталей трансмиссии равное или лучшее, чем на эталонной жидкости возрастание кисл. числа <3.25 мг КОН/г возрастание поглощения карбонильной полосы ИК-спектра <0.45 миним. содержание кислорода в газах из трансмиссии 4% вязкость работавшей жидкости при -20°С <2000 сП при 100°С >5.5 сСт отсутствие коррозии бронзового сплава в охладителе АВОТ удовлетворительная работа в течение 300 ч нерастворимые в пентане 1.0% макс. через 250 ч изменение кисл. числа через 250 ч 4.0 мг КОН/г макс. рост вязкости через 250 ч 40% макс. коррозия меди через 50 и 300 ч ЗЬ макс. указать вязкость по Брукфильду при -40°С в конце испытания указать потерю массы образца [c.138]


Смотреть страницы где упоминается термин Вязкость газов жидкостей: [c.32]    [c.99]    [c.338]    [c.179]    [c.104]    [c.588]    [c.58]    [c.392]    [c.85]    [c.553]    [c.140]    [c.14]    [c.45]    [c.588]    [c.690]    [c.189]    [c.335]    [c.367]    [c.371]   
Физическая химия Книга 2 (1962) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Вязкость газа

Газы в жидкости

Жидкости вязкость



© 2024 chem21.info Реклама на сайте