Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Альфа-частицы масса

    АЛЬФА-РАСПАД (сс-распад) — тип радиоактивного превращения, при котором испускаются альфа-частицы. Поскольку а-частица характеризуется массовым числом 4 и атомным номером 2, то возникающий при А.-р. новый химический элемент имеет по сравнению с исходным элементом на четыре единицы меньшую атомную массу и на две единицы меньший атомный номер (см. Радиоактивность). [c.20]


    Масса альфа-частицы. ....... [c.515]

    В 1910 г. Эрнст Резерфорд (1871-1937) опроверг модель Томсона. Это произошло более или менее случайно, в ходе измерений рассеяния пучка альфа-частиц при их прохождении сквозь чрезвычайно тонкие листки золота и других тяжелых металлов. (Схема эксперимента Резерфорда показана на рис. 8-1.) Резерфорд ожидал обнаружить сравнительно небольшое отклонение альфа-частиц, какое должно быть обусловлено равномерным распределением заряда и массы атомов по большому объему (рис. 8-2.а). Но наблюдаемая картина оказалась совершенно иной и полностью непредвиденной. Вот как описывает это сам Резерфорд  [c.330]

    Альфа-частицы и их свойства. а-Частицы — это ядра гелия Ше. Каждая частица несет два элементарных положительных заряда масса частицы в 4 раза больше массы 1/12 изотопа углерода Будучи выброшены из ядра, а-частицы движутся в зависимости от их энергии со скоростью от 14 ООО до 20 600 км в секунду. Они характеризуются длиной пробега. [c.55]

    Немецкий физик Вернер Карл Гейзенберг (1901—1976) сразу же предположил, что положительно заряженные частицы большой массы представляют собой не протонно-электронные комбинации, а протонно-нейтронные. Согласно этому предположению, альфа-частица состоит из двух протонов и двух нейтронов суммарный положительный заряд такой частицы равен двум, а суммарная масса равна четырем массам одного протона. [c.154]

    Эксперименты с альфа-лучами в магнитных полях показали, что отклонение этих лучей противоположно отклонению бета-лучей. Следовательно, альфа-лучи заряжены положительно. Далее, поскольку альфа-лучи отклоняются очень слабо, они должны обладать очень большой массой. И, как выяснилось впоследствии, масса альфа-частиц в четыре раза больше массы частиц, названных Резерфордом протонами. [c.153]

    Во внешних областях атома находятся отрицательно заряженные электроны, масса которых слишком мала, чтобы они могли мешать прохождению альфа-частиц. Хотя массы протона и альфа-частицы сравнимы с массой атома, и протон, и альфа-частицы — это голые атомные ядра. Они занимают такое маленькое пространство по сравнению с атомами, что, несмотря на большую массу, их также можно считать субатомными частицами. [c.155]

    ТОЛЬКО двух протонов. Исходя из этого, можно было предположить, что наряду с четырьмя протонами альфа-частица содержит также два электрона. Эти электроны нейтрализуют два из четырех положительных зарядов, но массы частицы практически не увеличивают. Этой точки зрения исследователи придерживались в течение примерно тридцати лет. Полагали также, что и другие положительно заряженные частицы с большой массой представляют собой аналогичные комбинации протонов и электронов. Однако при таком подходе ряд вопросов оставался нерешенным. Существовали сомнения относительно того, может ли альфа-частица состоять из такого множества меньших частиц. [c.154]


    Развивая теорию строения атома, Резерфорд пришел к выводу, что в центре атома имеется очень маленькое ядро, которое заряжено положительно и содержит все протоны (и все нейтроны, как позднее выяснилось). Атомное ядро должно быть очень небольшим (поскольку лишь очень малая часть альфа-частиц отклоняется, сталкиваясь с мишенью), но в этом ядре должна быть сосредоточена практически вся масса атома. [c.155]

    Такие огромные промежутки времени можно определить только путем подсчета числа альфа-частиц, испускаемых данной массой урана (или тория). Резерфорд подсчитывал альфа-частицы, регистрируя небольшие вспышки, возникающие при соударении альфа-частиц с экраном из сульфида цинка (т. е. при помощи так называемого сцинтилляционного счетчика). [c.165]

    Появление каждой новой альфа-частицы означало, что распался еще один атом урана, так что Резерфорд мог определить, сколько атомов распадается в секунду. Исходя из используемой им массы урана, Резерфорд определил общее число атомов урана. Располагая такими данными, было уже нетрудно рассчитать время, необходимое для распада половины имеющегося количества урана. Как выяснилось, речь идет о миллиардах лет. [c.165]

    Большая масса альфа-частиц может представлять сильную опасность, однако на очень малых расстояниях. Попав внутрь тела, в кровь или жизненно важные органы (например, при вдохе в легкие), альфа-частицы оказывают сильное разрушающие действие на ткани. [c.323]

    Бета-частица - )то быстрые электроны, излучаемые ядрами в процессе распада. Так как их масса намного меньше массы альфа-частиц и двигаются они с очень высокой скоростью, их проникающая способность намного выше, чем у альфа-частиц, но они очень опасны для тканей организма. [c.323]

    Бомбардировка легкими ядрами. В качестве ядерных снарядов для бомбардировки ядер-мишеней использовались альфа-частицы, протоны, дейтроны, электроны, фотоны, нейтроны. Наибольший заряд и массовое число имеет альфа-частица [Ще], которая, внедряясь в ядро мишени, может дать дочернее ядро с зарядом на 2 единицы и с массой на 4 единицы больше, чем у материнского ядра-мишени. Если дочернее ядро р -радио-активно, то, испуская электроны, оно превращается в новое ядро с зарядом, большим на единицу. Последнее свойство было использовано для получения 93 и 94 элементов из урана 238 при его бомбардировке тепловыми нейтронами  [c.73]

    Альфа-частицы легко задерживаются, но если уж они достигают легких или кровеносных сосудов, они наносят большие повреждения на очень коротком участке пути -, около 0,0025 см - из-за большой массы и высокой ионизирующей способности. Первостепенные факторы, определяющие опасность радиации для тканей, — это плотность ионизации (количество актов ионизации на единицу площади) и доза (количество поглощенной радиации). [c.352]

    Чаще всего наблюдалось радиоактивное излучение трех типов, которые получили название альфа(а)-, бета(Р)- и гамма(у)-лучей. Было установлено, что гамма-лучи представляют собой электромагнитное излучение с еще большей частотой (и более короткой длиной волны), чем рентгеновские лучи. Бета-лучи, подобно катодным лучам, оказались пучками электронов. Эксперименты по отклонению в электрическом и магнитном полях свидетельствовали, что альфа-лучи представляют собой пучки частиц с массой 4 ат. ед. и зарядом -Ь 2 альфа-частицы, из которых состояли эти лучи, представляли собой не что иное, как ядра гелия, [c.330]

    Описанные выше и аналогичные им эксперименты позволили получить совершенно необычную картину атома. Если бы можно было увеличить линейные размеры участка золотой фольги в 1 000 000 000 раз (в миллиард раз), то можно было бы увидеть огромную стопу атомов диаметром около 60 см, каждый из которых имел бы объем более 30 литров. Однако в действительности вся масса атома была бы сосредоточена в единственной частице, в ядре диаметром всего лишь около 0,025 мм, т. е. в частице размером с небольшую песчинку. Это ядро атома окружено такими же маленькими электронами, движуш,имися вокруг него с очень большой скоростью. Опыт Резерфорда сводится к простреливанию таких 30-литровых атомов пучком маленьких песчинок, каждая из которых будет продолжать двигаться по прямой, если не столкнется с такой же песчинкой, соответствующей ядру атома. Совершенно очевидно, что вероятность такого столкновения чрезвычайно мала. (Альфа-частицы не отклоняются электронами атомов, поскольку альфа-частицы значительно тяжелее электронов.) [c.62]

    Проведенные Резерфордом опыты по рассеянию альфа-частиц показали, что атом состоит из чрезвычайно плотного положительно заряженного ядра, окруженного электронами. Ядро состоит из протонов и нейтронов. Протон имеет единичный положительный заряд и массу 1,67 10 кг. Нейтрон представляет собой незаряженную частицу с массой 1,67 10- кг. [c.375]

    Поток бета-частиц — это поток электронов или позитронов, возникающих при радиоактивном распаде. Скорость их близка к скорости света, максимальная энергия лежит в диапазоне 0,05—3,5 МэВ. Ионизирующая способность бета-частиц ниже, а проникающая способность выше, чем альфа-частиц, так как они обладают значительно меньшей массой и большей скоростью. [c.53]


    Проводившиеся в Бостоне в 1965 и 1966 г. исследования радиоактивного поражения людей после серии испытаний атомных бомб показали, что в среднем каждый человек имеет плутониевую активность около 2 пикокюри. Сколько ядерных распадов в секунду происходит при таком уровне активности Если каждая альфа-частица несет с собой 8 10 Дж энергии и если принять, что средняя масса человека равна 75 кг, то какую дозу излучения (в радах) получает организм человека в течение года при таком уровне содержания в нем плутония Вычислите также соответствующую эквивалентную дозу излучения в бэрах. [c.279]

    Источник а-излучения помещали в свинцовый кубик с просверленным в нем каналом, так что удавалось получить поток а-частиц, летящих в определенном направлении. Альфа-частицы являются двукратно ионизированными атомами гелия (Не " "), Они имеют положительный заряд +2 и массу, почти в 7350 раз превышающую массу электрона. Попадая на экран, покрытый сульфидом цинка, а-частицы вызывали его свечение, причем в лупу можно было увидеть и подсчитать отдельные вспышки, возникающие на экране при попадании на него каждой а-частицы. Между источником излучения и экраном помещали фольгу, По вспышкам на экране можно было судить о рассеянии а-частиц, т, е. об их отклонении от первоначального направления при прохождении через слой металла. [c.38]

    Масса протона mp = (1,67248 0,00031 ) 10 г Масса нейтрона т = (1,67470 0,00004) 10 г Масса атома водорода тн= (1,67339 0,00012) г Масса альфа-частицы [c.476]

    Эти экспериментальные данные можно понять, если допустить, что большая часть массы атома сосредоточена в очень небольшой частице, которую Резерфорд назвал атомным ядром. Если альфа-частица также очень мала, то вероятность столкновения этих чрезвычайно малых частиц при прохождении альфа-частицы через атом будет небольшой. Большинство альфа-частиц может тогда проходить через фольгу без столкновения с каким-либо из атомных ядер и, следовательно, без отклонения от первоначального направления движения. [c.61]

    Нейтрино — частица с массой покоя, равной нулю, и со спином она отличается от фотона главным образом значением спина (фотон имеет спин 1). Предположение о существовании нейтрино высказал в 1927 г. В. Паули для объяснения, казалось бы, совершенно очевидно, го несоблюдения принципа сохранения энергии в процессе испускания бета-частицы (электрона) радиоактивным ядром (разд. 20.13). Данные наблюдений показали, что все радиоактивные ядра одного я того же вида испускают альфа-частицы, подобно На (рис. 20.6), обладающие одной и той же энергией, что и следовало ожидать согласно закону сохранения массы-энергии, но в то же время было известно, что некоторые радиоактивные атомы, например ФЬ, испускают бета-частицы разной энергии. Паули, а позже и Ферми предполагали, что при радиоактивном распаде ядра с испусканием бета-частицы испускается также частица с небольшой или нулевой массой покоя и при этом энергия реакции распределяется между бета-частицей и другой частицей, которую Ферми назвал нейтрино. [c.597]

    Совершенно ясно, что эти экспериментальные данные можно понять, если допустить, что большая часть массы атома заключена в очень маленькой частице, которую Резерфорд назвал атомным ядром. Если альфа-частица также очень мала, то вероятность столкновения этих двух чрезвычайно малых частиц при прохождении альфа-частиц сквозь атом будет очень небольшой. Учитывая, что одна частица примерно из 100 ООО отклоняется при прохождении фольги, толщина которой равна слою в 1000 атомов, только [c.61]

    Если атомное ядро испускает альфа-частицу (Не +), заряд ядра уменьшается на две единицы и, следовательно, исходный элемент пре-врашается в элемент, занимающий в периодической таблице место на две группы левее. Его массовое число (атомная масса) уменьшается на 4, т. е. на массу альфа-частицы. При испускании бета-частицы (электрона) заряд ядра увеличивается на единицу без изменения массового числа (наблюдается лишь весьма незначительное уменьщение атомной массы) в этом случае атом данного радиоактивного элемен та превращается в атом другого элемента, занимающего в периодиче ской системе место на одну группу правее. При испускании гамма лучей не происходит изменения ни атомного номера, ни атомной массы Ядерные реакции в ряду уран —радий приведены на рис. 20.6 Важнейший изотоп урана составляет 99,28% природного элемента [c.609]

    Американский химик У. Д. Харкинс в 1920 г. воспользовался значениями химических атомных масс легких элементов с четными атомными номерами (вплоть до 2=116, сера) для подтверждения своего заключения о том, что ядра этих элементов состоят из альфа-частиц.. Воспроизведите его доводы. Учтите, что в то время было известно лишь очень немного изотопов. [c.632]

    НОЙ приблизительно в одну тысячу атомов. Поскольку масса альфа-частицы почти в 7500 раз больше массы электрона, столкновения между ними могли вызывать лишь очень незначительные, почти незаметные отклонения альфа-ча-стиц. Следовательно, большая часть массы атома, которая была ответственна за наблюдавшиеся редкие отклонения, должна быть сосредоточена в малой области атома расчеты показывали, что диаметр этой области равен 1/10000 диаметра всего атома (рис. 4.8). [c.63]

    Выброс альфа-частицы атомным ядром уменьшает порядковый номер (заряд) на две единицы и его массу на четыре единицы. В качестве примера приведем реакцию [c.427]

    Протоны и другие частицы очень высоких энергий позволили не только открыть новые ядерные реакции, но и проникнуть еще глубже в тайны ядра. Установлено, что в результате ядерных реакций с частицами больших энергий из ядер (или нуклонов) вылетают новые элементарные частицы. Первая из них была открыта в 1948 г. в реакциях с альфа-частицами, ускоренными до 380 Мэе. Она имела массу, равную 273 электронным массам, и получила название пи-мезон, что в переводе на русский язык означает средний . Действительно, масса пи-мезона занимает промежуточное положение между массами электрона и протона. Следует отметить, что пи-мезоны были обнаружены еще в 1937 г. в космических лучах. [c.24]

    Далеко не все ядра неона взаимодействуют и сливаются с ядрами плутония. Но даже если слияние произошло, то образовавшееся новое ядро оказывается сильно возбужденным. Из-за этого возбуждения оно не может сохранить свою начальную массу (22+242=264), а обязательно освобождается от избытка энергии, главным образом путем деления на два ядра примерно равной массы пли, реже, выбрасывая альфа-частицы, нейтроны, протоны. [c.472]

    Этот элемент достаточно изучен его изотопы с массой 255 и 256 живут соответственно 0,6 секунды и 30 секунд и тоже испускают альфа-частицы, превращаясь в ядра элемента № 101 - менделевия. Вполне закономерно, что первые попытки идентифицировать элемент № 105 сводились к установлению генетической связи альфа-частиц с новыми, не наблюдавшимися прежде характеристиками [c.485]

    Изучение радиационного повреждения, вызванного действием осколков деления, представляет значительный практический интерес. По этой причине процесс заслуживает более внимательного рассмотрения, чем когда он происходит под действием протонов и альфа-частиц [48, 52—54]. Рассеяние энергии осколков деления происходит путем непосредственного взаимодействия с решеткой и с электронами мишени. Последние во всех случаях получают более 95% энергии осколков деления . Ввиду того что отношение масс электрона и осколков деления составляет 2,105, максимальная энергия, которую может получить электрон, достигает 400 эв, а средняя величина равна 100 эв. Что касается столкновений, то Озеров рассчитал, что в уране осколки деления рассеивают 5% своей энергии на смещения в результате столкновения. В своих расчетах он учитывал различные области энергий осколков деления. [c.201]

    Толш,ина золотой фольги, служившей мишенью, соответствовала двум тысячам атомов, и тем не менее большинство альфа-частиц беспрепятственно проходят через нее, следовательно, можно было предположить, что атом не является сплошным. В то же время некоторые альфа-частицы, сталкиваясь с фольгой, резко отклоняются, следовательно где-то в атоме должна быть положительно заряженная область, в которой сосредоточена практически вся масса атома.  [c.155]

    В расчете на 1 моль ядер Li АЕ = = 3,09 10 Дж. 20.36. а) АЕ = = 1,7010 Дж/моль б) АЕ = = 3,15-10" Дж/моль в) АЕ = = 1,77 10 Дж/моль. 20.38. Энергия связи в расчете на один нуклон максимальна для ядер с массовыми числами вблизи 50 (см. рис. 20.8). Поэтому 2 Со должен иметь наибольший дефект массы в расчете на один нуклон. 20.40. Как °Sr, так и Ва, весьма вероятно, включаются в цепь питания, замещая кальций или, возможно, цинк. Ни Н2, ни Кг не накапливаются в живых системах. 20.42. Вещества, излучающие альфа-частицы, представляют опасность только при их попадании в организм (вдыхание или проглатывание), поскольку альфа-частицы не обладают большой проникающей способностью. Плутоний плохо выводится из организма и, оставаясь в нем, вызывает его радиационное разрушение в течение длительного времени. 20.46. а) Добавьте С1 в виде хлорида (соль) к воде. Растворите I3 OOH обычным способом. Через некоторое время перегонкой отделите летучие вещества от соли I3 OOH является летучим веществом, и его можно отделить перегонкой от воды. Определите радиоактивность летучего вещества. Если обмен хлора успел произойти, то летучее вещество должно быть радиоактивно. [c.477]

    Несколько лучшее понимание природы этих испускаемых частиц, или лучей пришло с появлением магнитного метода исследования-Еще в 1899 г. было найдено, что бета-лучи отклоняются в магнитном поле, причем вид отклонения показывал, что они очень похожи на электроны с большой энергией. Одновременно первые исследования пока зали, что альфа-лучи, напротив, не чувствительны к магнитному полю. Однако, продолжая исследование излучений, Резерфорду удалось в 1903 г. показать, что в достаточно сильном магнитном поле отклоняются и альфа-частицы. Направление отклонения свидетельствовало о том, что альфа-частицы заряжены положительно, а расчет отнощения заряда к массе убедил в том, что они могут быть дважды ионизированными атомами гелия. Эта идея подтверждалась постоянным присутствием гелия в урановых рудах, а впоследствии была доказана постановкой следующего опыта. Радиоактивный образец запаивали в ампулу с достаточно тонкими стенками, сквозь которые могли проникать альфа-частицы, и ампулу помещали в ва-куумированный стеклянный сосуд. Через несколько дней в сосуде оказывалось достаточное для обнаружения спектральным методом количество гелия. [c.384]

    Ядро атома гелия, которое также называют альфа-частицей или гелионом, имеет электрический заряд, в два раза превышающий заряд протона, и массу приблизительно в четыре раза больше массы протона. Считают, что альфа-частица состоит из двух протонов и двух нейтронов. [c.52]

    Нейтрон был открыт в 1932 г. английским физиком Джеймсом Чедвиком (1891—1974). Два немецких исследователя В. Боте и Г. Беккер в 1930 г. экспериментально установили наличие сильно проникающего (жесткого) излучения, которое возникает при бомбардировке металлического бериллия альфа-частицами, испускаемыми радием. Боте и Беккер считали, что это излучение представляет собой гамма-лучи. Затем-Фредерик Жолио и его жена Ирен Жолио-Кюри открыли, что излучение бериллия при прохождении через парафин или другое вещество, содержащее водород, вызывает образование большого числа протонов. Буду-чи не в состоянии объяснить факт образования протонов под действием-гамма-лучей, Чедвик решил выполнить серию экспериментов их результаты позволили установить, что излучение бериллия в действительности состоит из частиц, не имеющих электрического заряда и обладающих массой, приблизительно равной массе протона. Не имея электрического заряда, нейтроны слабо взаимодействуют с другими материальными частицами, за исключением тех случаев, когда они подходят к ним на очень близкое расстояние, не лревышающее 10 м. [c.588]

    В последнее время с ростом числа онкологических заболеваний активно ведутся поиск и исследование радионуклидов, которые обладали бы оптимальными для радиотерапии свойствами. К числу таких свойств относят испускание частиц с высокой линейной передачей энергии при ограниченной длине пробега. Наиболее эффективной считают радиоиммунотерапию (особенно на начальной стадии появления опухолевых клеток) как дополнение к другим традиционным методам. Наиболее подходящими по свойствам считаются альфа-излучатели, благодаря более высокой линейной передаче энергии ( 80 кэВ/мкм) и очень маленькой длине пробега частиц (50-90 мкм), по сравнению с бета-излучателями. Подсчитано, что количество альфа-рас-падов на единицу массы ткани, необходимое для достижения одного и того же терапевтического эффекта, примерно на 3 порядка меньше, чем число бета-распадов, т. е. для полного уничтожения опухолевой клетки достаточно 1-3 прохождений альфа-частицы через ядро клетки. Данные свойства делают альфа-излучающие радионуклиды пригодными для терапии злокачественных опухолей. Исследования показали, что альфа-излучатели успешно можно применять для лечения микрометастазов в начальной стадии развития, лейкемии, рака лёгких. Они также позволяют бороться с такой болезнью как СПИД на стадии, не превышающей образования нескольких клеток. [c.552]

    Что происходит с порядковым Еюмером и атомной массой изотопа, испускающего альфа-частицу  [c.438]

    И напоследок — о плутонии-238 — самом первом из ру-котворных>> изотопов плутония, изотопе, который вначале казался бесперспективным. В действительности это очень интересный изотоп. Он подвержен альфа-распаду, т. е. его ядра самопроизвольно испускают альфа-частицы — ядра гелия. Альфа-частицы, порожденные ядрами плутония-238, несут большую энергию рассеявшись в веществе, эта энергия превращается в тепло. Как велика эта энергия Шесть миллионов электронвольт освобождается при распаде одного атомного ядра плутония-238. В химической реакции та же энергая выделяется при окислении нескольких миллионов атомов. В источнике электричества, содержащем один килограмм плутония-238, развивается тепловая мощность 560 ватт. Максимальная мощность такого же по массе химического источника тока — 5 ватт. [c.404]

    При рассмотрении взаимодействий с электронной оболочкой следует обратить внимание на два важных свойства 1) в противоположность бета-излучениро можно провести четкую границу между исходным и вторичным излучением. Последнее состоит из электронов и фотонов 2) статистически энергия, переданная электрону мишени входящей частицей, зависит от соотношения масс обеих взаимодействующих частиц. Протоны, дейтоны и альфа-частицы с энергиями около I Мэе могут сообщать электрону энергию в количестве лишь 1 кэв. Поэтому, когда мишени состоят из элементов с атомными номерами большими 10, при облучении частицами с энергией менее нескольких миллиоьюв электрон-вольт только внешние электроны могут взаимодействовать с поступающими частицами. Кроме того, в случае протонов, дейтонов и альфа-частиц, энергия которых значительно больше 1 кэв, основным фактором, обусловливающим рассеяние энергии, является возбуждение, а не ионизация, тогда как при бета-излучении этот процесс становится заметным лишь для энергий меньших 100 эв. [c.200]

    Альфа-частицы, испускаемые радием, обладают энергией 4,79 Мэе (4,79 млн. эв). С какой скоростью они движутся Каково отношение их скорости к скорости света Масса альфа-частицы равна 6,66-10 г. (Ответ скорость равна 1,5-10 см1сек. Заметьте, что если скорость частицы составляет менее 10% скорости света, то выражение У тр для кинетическ(зй энергии этой частицы можно использовать и при этом ошибка не будет превышать 1%. Для больших значений скорости, чтобы получить правильные ответы, необходимо применять теорию относительности.) [c.67]


Смотреть страницы где упоминается термин Альфа-частицы масса: [c.310]    [c.53]    [c.457]    [c.274]    [c.61]    [c.40]    [c.47]   
Действующие ионизирующих излучений на природные и синтетические полимеры (1959) -- [ c.26 ]




ПОИСК





Смотрите так же термины и статьи:

Альфа

Альфа-частица



© 2025 chem21.info Реклама на сайте