Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Алюминий энергия валентного состояния

    Энергии диссоциации галогенидов алюминия на атомы в валентных состояниях [c.148]

    При ограничении поверхностью трехмерной решетки окисла, подобного окиси алюминия, ненасыщенные валентности поверхностных ионов обычно компенсируются образованием гидроксильных ионов (благодаря соприкосновению с атмосферной влагой). Приближенный расчет показывает, что для насыщения поверхности окиси алюминия величиной 300 необходимо 6—7 вес. % структурной воды , образующей поверхностные гидроксильные ионы. В результате удаления этих гидроксильных ионов (в виде воды) благодаря высокотемпературной сушке поверхность окиси алюминия остается в модифицированном состоянии с высокой энергией. Можно предположить, что образованные таким образом модифицированные места и являются активными центрами для peaкц fй обмена водорода с дейтерием и гидрогенизации этилена. Этот эффект был продемонстрирован для других окислов, таких, как окись магния, двуокись циркония и двуокись тория, которые могут активировать водород в мягких условиях, подобно окиси алю.миния, если их перед этим подвергнуть соответствующей дегидратации [1], Наблюдается заметный параллелизм между реакциями изотопного обмена и гидрогенизации над окисью алюминия, хотя эти реакции протекают при температурах, различающихся на несколько сотен градусов. Для обеих реакций начальная актиЕ -ность увеличивается по мере повышения температуры, высушивания катализатора. Добавление 0,15 вес. % воды к дегидратированной окиси приводит к почти полной потере каталитической активности. Эффект полного отравления водою проявляется, только когда вода вводится при температурах около. 300° или выше. Наконец, активные места поверхности отравляются при [c.90]


    Величины последовательных ионизационных потенциалов, часто оказывающих решающее влияние, приведены в табл. 4 гл. 2. Эти величины следует применять здесь с большой осторожностью, так как они включают электростатическую составляющую, которая гораздо больше, чем при комплексообразовании. Тем не менее, если для различных ионов металлов сравнивают соответствующие валентные состояния, эти величины дают полезную качественную информацию. Так, для удаления первых трех электронов от атома алюминия в газовой фазе требуется 1228 ккал, а от атома титана— 1104 ккал. С другой стороны, энергии, необходимые для удаления четвертого электрона от алюминия и титана, равны соответственно 2767 и 997 ккал. Это различие настолько велико, что соединения АЦГУ) не имеют в химии никакого значения. Подобным же образом для перехода от Ы к Ы и от к требуется соответственно 124 и 1744 ккал по сравнению с 120 и 231 ккал, необходимыми в случае бария. В случае ионов переходных металлов гораздо большая энергия перехода Си2+- -Си + (849 ккал), чем Ре2+- Ре + (707 ккал), объясняет отсутствие простых солей Си(П1), а различие между переходами 5п2+- 5п (1642 ккал) и РЬ2+- РЬ + (1712 ккал) помогает объяснить большую легкость окисления олова. [c.72]

    Следует заметить, что для образования связей и проявления степени окисления +3 необходимо участие спаренных электронов, занимающих -орбиталь в атомах этих элементов. Пара электронов 5 устойчива и принимает участие в образовании химических связей лишь у элементов, образующих прочные связи например, у алюминия валентность +3 является преобладающей. Устойчивость одновалентных состояний растет в подгруппе по мере снижения прочности связей, и у таллия известны многочисленные соединения, в которых он одновалентен. Напротив, бор в соединениях всегда трехвалентен образование ковалентных связей в общем случае может доставить энергию, необходимую для того, чтобы перевести электроны атома бора в реакционноспособное возбужденное состояние, отвечающее 5р -гибридизации. Ионизационный потенциал (первый) бора настолько высок (8,29 эВ), что образование одной связи с одновалентным катионом бора не может компенсировать затраты энергии на отрыв электрона. Направление осей гибридных облаков этого типа характеризуется углами 120°, причем все три оси лежат в одной плоскости. Поэтому молекула соединения бора типа ВС1з имеет плоскую структуру. Бор в гидридах формально ведет себя как четырехвалентный элемент. Боран ВНз в свободном состоянии неизвестен и обнаружен только как неустойчивый промежуточный продукт. Но диборан ВгНв исследован детально. Этот гидрид был использован для получения и ряда других боранов. Диборан получают в чистом виде из борогидрида натрия и три-фторида бора  [c.157]


    Общая характеристика. Эти элементы редкие, за исключением алюминия, на долю которого приходится 8,8% массы земной коры (третье место — за кислородом и кремнием). Во внешнем электронном уровне их атомов по три электрона а в возбужденном состоянии Проявляют высшую валентность 111 Э2О3, Э(ОН)з, ЭС1з и т. д. Связи с тремя соседними атомами в соединениях типа ЭХд осуществляются за счет перекрывания трех гибридных облаков поэтому молекулы имеют плоское трехугольное строение, дипольный момент нуль. Из-за того, что в атомах галлия, индия и таллия предпоследний уровень содержит по 18 электронов, алюминия 8 и бора 2, нарушаются закономерные различия некоторых свойств при переходе от алюминия к галлию температур плавления элементарных веществ, радиусов атомов, энтальпий и свободных энергий образования оксидов, свойств гидроксидов и пр. (табл. 23). Таков же характер изменения различий при переходе от магния к цинку. [c.279]

    Истинный механизм образования полимеров столь стереорегулярного строения, как уыс-1,4-полиизопрен, на стереоспецифических катализаторах изучен совершенно недостаточно. Проведено углубленное исследование катализатора, состоящего из триизобутилалюминия и четыреххлористого титана [210]. При смешении этих компонентов образуется твердый осадок, в котором титан практически полностью находится в состоянии низшей валентности. С увеличением количества алкилалюминрш это твердое вещество изменяется, превращаясь из коричневого треххлористого титана в другие соединения, в которых хлор частично замещен алкильными группами. Скорость полимеризации зависит от отношения алюминий титан максимальная скорость с получением целевого г мс-1,4-полиизопрена достигается при молярном отношении 1 1 вторичный максимум скорости наблюдается при отношении 3 1 и соответствует образованию смолистого полимера. С увеличением степени превращения собственная вязкость полимера возрастает, а затем стабилизируется. С точки зрения кинетики эта реакция имеет первый порядок по отношению к концентрации мономера при постоянном отношении алюминий титан и постоянной активности катализатора энергия активации ее равна около 14,4 ккал/молъ. Кинетика суммарной реакции может быть представлена уравнением [c.199]

    Такое же соответствие в расположении уровней энергии имеется в ряду Ы, Ве, В +, С , из чего следует заключить, что остов атома углерода, если не говорить о ядре, соответствует остову атома гелия. Сравнивая схемы уровней, приведенные на рис. 70 и 71, можно заключить, что у алюминия третий присоединяюхцийся к остову атома АР электрон связан иначе, чем два электрона, присоединившиеся до него. Из правой половины рис. 71 видно, что у ионизированного углерода С валентный элейтрон находится в нормальном состоянии на 2р-уровне. Электронное облако, символизирующее вероятность его нахождения вблизи ядра, имеет не симметрию шара, которой обладают электронные облака двух электронов, присоединяющихся после образования гелиевой оболочки, а только симметрию вращения. Четвертый внепший электрон, по спектральным данным, также находится на 2р-уровне. Таким образом, из четырех внешних электронов нейтрального атома С два находятся на 2/>-уровне и два — на 2х-уровне. Два последних электрона обладают антипараллельными спинами. Энергетические уровни внешних электронов, аналогичные уровням углерода, определяются из спектральных термов для кремния два электрона на 3 - и два электрона на 3 />-уров-не это же справедливо и для других аналогов углерода, которые, следовательно, в противоположность элементам побочной подгруппы IV группы не только химически, но и спектроскопически аналогичны обоим наиболее легким элементам главной подгруппы. [c.454]

    За счет сил, обусловливающих образование ионной решетки, может быть выполнена работа отрыва тре электронов, но не четырех электронов, ибо эта работа возрастает в значительно большей степени, чем энергия решетки, образованной из соответствующих ионов. Рассчитанная по уравнению (И) (стр. 155) энергия решетки для соединений четырехвалентного алюминия, изотинных соединениям трехвалентного алюминия и обладающих одинаковыми размерами решетки, превышает всего лишь в 1,8 раза энергию решетки соединений трехвалентного алюминия, тогда как соответствующие работы ионизации находятся в отношении 3,25 1. Таким образом, становится понятным, почему в гетерополярных соединениях алюминий всегда бывает только трехвалентным, а не четырехвалеитным. Все это справедливо и для других элементов этой группы. При помоицт рассмотренного на стр. 157 кругового процесса можно далее показать, что в общем нельзя ожидать, что бор и алюминий при обычной температуре будут образовывать устойчивые в твердом состоянии гетерополярные соединепия, в которых они бы обладали валентностью, меньшей чем З. Чтобы сделать достоверные выводы, необходимо провести расчет стабильности для каждого отдельного случая. Нельзя также, исходя из нестабильности соединения в твердом состоянии, сразу же делать заключение о нестабильности его также и в растворе. Стабильность в водном растворе в значительной степени определяется теплотами гидратации ионов. Насколько сильно зависит от них стабильность соединения, показывает следующий пример. [c.319]



Смотреть страницы где упоминается термин Алюминий энергия валентного состояния: [c.238]    [c.181]    [c.242]    [c.181]    [c.356]    [c.120]    [c.173]    [c.173]    [c.36]    [c.153]    [c.112]    [c.33]   
Теплоты реакций и прочность связей (1964) -- [ c.148 , c.149 ]




ПОИСК





Смотрите так же термины и статьи:

Энергия валентного состояни

Энергия состояния



© 2025 chem21.info Реклама на сайте