Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Образование полимеров механизм

    Для подобного рода полимеров механизм растворения включает две стадии, которые, очевидно, перекрываются В первой — происходит диффузия подвижных молекул растворителя в полимер Последние, разрывая межмолекулярные водородные связи, проникают между макромолекулами, образуя между ними мономо-лекулярный сольватный слой У линейных полимеров с достаточно большим молекулярным весом в этой стадии происходит набухание, сопровождающееся уменьшением энтальпии системы Энтропия при этом остается почти неизменной или несколько уменьшается Образование мономолекулярного сольватного слоя отделяет макромолекулы друг от друга, что облегчает дальнейшее набухание полимера Когда набухание становится неограниченным, макромолекулы переходят в раствор Это вторая стадия процесса, характеризующаяся постоянством энтальпии и непрерывным возрастанием энтропии [c.265]


    Синтез полиамидокислоты является бимолекулярной реакцией ацилирования аминов, заключающейся в нуклеофильной атаке аминогруппы, приводящей к раскрытию ангидридного цикла с образованием полимера. Механизм аминолиза ангидридов карбоновых кислот монофункциональными аминами изучался методом ультрафиолетовой спектроскопии в работе [ ]. Механизм реакции образования полиамидокислоты на примере взаимодействия пиромеллитового диангидрида с тетраметил-и-фенилендиамином исследовался в работе [ ] методом электронного парамагнитного резонанса. Поскольку пиромеллитовый диангидрид является акцептором электронов, а ароматические диамины характеризуются низким потенциалом ионизации, здесь возможно образование комплексов с переносом заряда между реагирующими веществами. [c.16]

    Как бы вы экспериментально определили, по какому механизму (полимеризации или поликонденсации) идет образование полимера из неизвестного мономера  [c.284]

    Рассмотренная реакция имеет название ступенчатой полимеризации. Иногда ее называют миграционной полимеризацией (вследствие миграции водорода), или полимеризацией полиуретанового типа. Особенность ее заключается в следующем она, как и реакция полимеризации, не сопровождается отщеплением низкомолекулярных продуктов повторяющееся структурное звено имеет то же число атомов, что исходные мономеры. От реакции полимеризации она отличается тем, чю порядок чередования атомов в структурном, звене отличается от порядка чередования их в исходных мономерах. Процесс образования полимеров протекает не по цепному механизму, а ступенчато, аналогично реакции поликонденсации. [c.42]

    Процесс образования полимера может происходить через стадии образования димера, тримера и т. д., т. е. по механизму ступенчатых процессов. [c.200]

    Им было показано, что при термической полимеризации углеводородов с сопряженными двойными связями нет равновесия димер —полимер, а процесс полимеризации идет одновременно в двух направлениях — с образованием димера и с образованием полимера. Механизм этого процесса Лебедев видит в образовании неустойчивого парного комплекса, который может превратиться в циклический димер (циклическая природа этих димеров была Лебедевым строго доказана) или же, взаимодействуя с новыми молекулами диена, дать полимер, например в случае бутадиена  [c.636]


    В заключение данного раздела можно сказать, что не столь уж очевидно, что нагружение и разрыв цепей определяют ползучесть неориентированных полимеров. Механизм размягчения (общий для всех линейных полимеров [122, 128]), обусловливающий переход от замедленной ползучести к ускоренной ползучести, обычно связан с сегментальным движением и изменением межмолекулярного притяжения, а не с уменьшением длины цепей или их прочности. Исследование образования свободных радикалов при ползучести неориентированных полимеров, выполненное Янсоном и др. [125], пока еще также неубедительно. С учетом примесных радикалов в ПВХ данные авторы получили значительное уменьшение скорости ползучести ( в 10 раз). Однако они утверждают, что нельзя отделять эффект стабилизации материала от эффекта его механического усиления [125]. [c.289]

    Координационная полимеризация поливнедрение). Под координационной полимеризацией понимают такой способ образования полимера, при котором мономер внедряется между фрагментом инициатора — атомом металла комплексного катализатора — и растущей цепью. Ступень внедрения при этом предполагает, как правило, предварительную координацию (фиксацию) мономера на атоме металла. Координационную полимеризацию можно, например, проводить с помощью так называемого смешанного металлоорганического катализатора катализатор Циглера) [3.9.4], [3.9.5]. Катализатор Циглера состоит из соединений IV—VHI побочных групп элементов Периодической системы и металлоорганического соединения элемента I — П1 главной группы элементов. Типичной комбинацией является комплекс хлорида титана (IV) с триэтилалюминием. Механизм координационной полимеризации на катализаторах Циглера пока точно не известен. Одпако установлено, что из металлоорганического производного и соединения переходного металла образуется комплекс, в котором переходный металл находится в более низшей степени окисления (например, Ti(III)) и связан с углеводородным остатком а-связью. Молекула этилена, например, присоединяется к координационно-ненасыщенному соединению Ti(III) с образованием донорно-акцепторной связи. Затем, через четырехцентровое переходное состояние протекает внедрение молекулы этилена по связи Ti — R, при этом вновь возникает координационно-свободное место на атоме переходного металла, которое снова может быть занято молекулой этилена  [c.718]

    В случае образования растворимых линейных или разветвленных полимеров дополнительные сведения о механизме протекающих реакций могут быть получены на основании определений среднего молекулярного веса полимера и построения кривой распределения по молекулярному весу. Механизм и кинетику образования полимеров пространственной структуры более достоверно удается исследовать в начальных стадиях процесса, когда продукты реакции еще растворимы. На основании этих исследований делают предположения о возможных направлениях дальнейшего процесса образования полимера и о наиболее вероятном строении звеньев его макромолекул. [c.88]

    Процессы образования и роста кристаллов в полимерах Механизм зародышеобразования в полимерах принципиально [c.52]

    Наряду с химией получения полимеров, разрабатывающей методы синтеза новых полимерных молекул, существуют и быстро развиваются физика и механика полимеров, а также раздел химии полимеров, посвященный закономерностям химических превращений макромолекул, или химической модификации полимеров. Изучаются механизмы и скорости образования полимеров, их струк- [c.5]

    С момента выхода в свет первого издания книги прошло более четырех лет. За истекшие годы в области химии и физикохимии высокомолекулярных соединений были достигнуты большие успехи. Предложены новые методы синтеза высокомолекулярных соединений, высказаны предположения о механизме некоторых реакций образования полимеров, значительное развитие получила синтетическая химии сополимеров, главным образом блок- и привитых сополимеров. [c.8]

    Предлагается следующий механизм образования полимера Б  [c.336]

    Истинный механизм образования полимеров столь стереорегулярного строения, как уыс-1,4-полиизопрен, на стереоспецифических катализаторах изучен совершенно недостаточно. Проведено углубленное исследование катализатора, состоящего из триизобутилалюминия и четыреххлористого титана [210]. При смешении этих компонентов образуется твердый осадок, в котором титан практически полностью находится в состоянии низшей валентности. С увеличением количества алкилалюминрш это твердое вещество изменяется, превращаясь из коричневого треххлористого титана в другие соединения, в которых хлор частично замещен алкильными группами. Скорость полимеризации зависит от отношения алюминий титан максимальная скорость с получением целевого г мс-1,4-полиизопрена достигается при молярном отношении 1 1 вторичный максимум скорости наблюдается при отношении 3 1 и соответствует образованию смолистого полимера. С увеличением степени превращения собственная вязкость полимера возрастает, а затем стабилизируется. С точки зрения кинетики эта реакция имеет первый порядок по отношению к концентрации мономера при постоянном отношении алюминий титан и постоянной активности катализатора энергия активации ее равна около 14,4 ккал/молъ. Кинетика суммарной реакции может быть представлена уравнением [c.199]


    Из приведенных данных по механизму стереоспецифической полимеризации следует, что активные центры образуются при сорбировании алюминийорганического компонента на поверхности твердой фазы. Поэтому в первую очередь именно этот компонент будет оказывать влияние на скорость образования полимера и его стереорегулярность. [c.39]

    Таким образом, уже при рассмотрении общей картины образования полимеров изобутилена по схеме катионной полимеризации совершенно очевидны трудности в понимании тонкого механизма отдельных элементарных стадий. Прежде всего это относится к актам инициирования и роста полимерных цепей в малополярных углеводородных средах, отражающих высокую специфичность реакций образования и роста полимерных карбкатионов, отсутствующих в химии их низкомолекулярных аналогов. Малые эффекты внутренней стабилизации растущих ионов карбония с изобутиленовой структурой из-за отсутствия сильных электронодонорных заместителей у катионного центра обусловливают существенную роль сольватирующей (электростатической) функции мономера, несмотря на невысокие значения диэлектрической проницаемости (е = 2-3). Плохая в общепринятом смысле сольватация ионов карбония благодаря большим размерам ассоциатов не исключает, а предполагает эффективную внешнюю стабилизацию с помощью мономера, связанную с его нуклеофильной функцией. Важно подчеркнуть взаимосвязь электростатического и ковалентного связывания (или факторов жесткости и мягкости) в реакции ионов карбония с олефином. Стабилизация карбкатионов мономером, определяемая орбитальной координацией, связана с обратным упорядочивающим действием иона на молекулы мономера в его непосредственном окружении, ориентирующим их согласно электростатическому фактору. В совокупности это объясняет быстрый рост катионов в неполярных средах и наблюдаемые кинетические особенности реакции полимеризации. [c.109]

    Затем, по мере развития исследований разнообразных синтетических и природных полимеров, удалось получить некоторые синтетические полимеры в виде единичных микрокристаллов (монокристаллов). Понятие о кристаллической структуре изменилось - было сформулировано понятие кристаллической решетки полимеров. Одновременно изменились представления и об аморфных полимерах и сложилось новое современное понятие ориентированных полимеров. Выяснили, что процессы кристаллизации могут происходить лишь в ранее упорядоченных системах, причем возникновение простейших надмолекулярных структур начинается уже в аморфных полимерах. Механизм образования монокристаллов оказался иным, чем у низкомолекулярных соединений. [c.130]

    Как видно из приведенных выше рассуждений, микротактичность может быть оценена как на основе кинетических данных, так и путем исследования полученного полимера. Другими словами, изуче- ние структуры макромолекулы позволяет делать выводы о кинетике и механизме образования полимера. [c.192]

    Для процесса поликонденсации характерно то, что на всех последующих стадиях реакция протекает по такому же механизму, что и на первоначальных, и в то же время каждая стадия поликонденсации представляет собой самостоятельную реакцию, не зависящую от предыдущих. Для осуществления каждой стадии поликонденсации необходима затрата энергии, количество которой определяется типом исходных веществ. Количество энергии остается неизменным на протяжении всех актов присоединения и не зависит от размера растущих макромолекул, поэтому скорость реакции поликонденсации возрастает с повышением температуры. Снижением температуры можно приостановить процесс образования полимера на любой стадии. [c.389]

    К, поликонденсационным процессам ранее относили реакции образования полимеров путем взаимодействия полифункциональных мономеров с выделением низкомолекулярных продуктов. Однако такое определение не охватывает все известные в настоящее время процессы данного типа. Так, образование типичных конденсационных полимеров — полиуретанов и полимочевин — из диизоцианатов и диолов или соответственно диаминов протекает без выделения низкомолекулярных продуктов. Более правильно при определении процесса поликонденсации учитывать особенности механизма образования полимера. Поэтому целесообразно рассматривать поликонденсацию как процесс получения высокомолекулярных соединений путем взаимодействия полифункциональных мономеров, протекающий по ст упенчатому механизму. [c.156]

    При эксплуатации реактора свойства катализатора со временем меняются. Это приводит к изменению схсоростей реакций, а следовательно и степени конверсии сырья в данной точке реактора. Темпера-турыне профили деформируются (рис.35) и меняется режим работы реактора, Имеется три главте причины дезактивации катализатора отравление каталитическими ядами, спекание и образование полимеров /116/. Рассмотрим механизмы дезактивации. [c.130]

    Механизм полимеризации лактамов недостаточно изучен. При нагревании капролактама при 250—260° в присутствии небольшого количества воды, аминокислоты или амина происходит разрушение цикла и образование полимера. Влага, возможно, способствует процессу гидролиза некоторого количества лактама до аминокислоты. При поликонденсации образовавшейся аминокислоты снова выделяется вода, которая расходуется в процессе гидролиза нового количества лактама. Такой процесс образования полимеров лактама можно представить следующей схемой  [c.444]

    Образующееся соединение немедленно полимеризуется с образованием циклических продуктов и линейных высокомолекулярных соединений. Доказательством возможности образования полимеров по такому механизму служит возникновение при гидролизе алкил- или арилсилантриолов полимерных цепей, содержащих циклические звенья, а также результаты анализа продуктов деполимеризации полиорганосилоксанов, нагретых до 400° в этих продуктах найдены летучие низкомолекулярные трисил-оксаны типа (Н.,510),,. [c.481]

    Образование полимера происходит при последовательном присоединении мономеров. Полимеризация ненасыщенных соединений может проходить по разным механизмам свободно-радикальному, ионному. Кратко рассмотрим их по агдельнссти. [c.233]

    Полак Л. С., Неравновесная химическая кинетика и ее применение, М., 1979. Л. С. Полак. РАДИАЦИОННАЯ ПОЛИМЕРИЗАЦИЯ, инициируется радикалами, положит, и отрицат. ионами, образующимися при взаимод. с в-вом излучения высокой энергии (напр., рентгеновского и 7-лучей, а- и (3-частнц, ускоренных электронов, протонов и др.). К Р. п. способны любые мономеры. Механизм зависит от их строения и условий р-дии (т-ра, природа р-рителя). Наиб, часто процесс проводится в жидкости, твердой фазе (см. Твердофазная полимеризация) и в адсорбц. слоях. Кинетика Р. п. в жидкости, структура образующихся полимеров и состав сополимеров определяются природой активного центра (радикальная, ионная). Особенности Р. п.— независпмопь скорости инициирования от т-ры, легкость регулирования мовщости дозы, Высокая степень чистоты получаемых полпмеров, возможность продолжения р-ции.после выключения источника излучения (пост-полимеризация), особенно в эмульсиях, с образованием полимеров высокой мол. массы. [c.488]

    Степень полидисперсности связана с механизмом образования полимера. Так, для полимера, полученного радикальной полимеризацией, при рекомбинационном обрыве цепи Ai /Ai = 1 5, при обрыве цепи в результате диспропорционирования М /Мп = 2. Для продуктов поликонденсации наиболее вероятное отношение Мш/Мп = 1 + <7, где —степень завершенности реакции при q- отношение MwfMn 2. Но полимер, подвергнутый различным химическим или физическим превращениям, при которых могут происходить и деструкция и сшивание макромолекул, может характеризоваться практически любым отношением Ми-/М . [c.94]

    Поликонденсация протекает по ступенчатому механизму. Как мы только что видели, образование полимера происходит шаг за шагом — ступенями, через стадию димера, тримера, тетрамера и т. д. Промежуточные соединения стабильны, способны вступать в реакцию, если им сообщить энергию. При поликонденсации необходимая энергия затрачивается на каждый акт роста цепи равномерно, тогда как при цепном механизме она перенимается от предыдущих актов роста цепи и в основном затрачивается на образование активных центров. Поликонденсация может быть прервана в любой стадии и затем снова возобновлена. [c.39]

    Сильные кислоты Льюиса, такие, как А1С1з или ВРд, имеют тенденцию к образованию полимеров, но водные растворы кислот, таких, как серная иль фосфорная, дают продукты меньшего молекулярного веса. Поскольку реакция протекает по карбоний-ионному механизму, возможны все потенциальные реакции ионов карбония, а именно гидридные сдвиги, миграция алкильных групп, циклизация, не говоря уже о более глубоко полимеризации. Например, при действии на тетраметилэтилен водной серной кислоты образуется фракция олефинов С12, содержащая не менее 20 изомеров (11. И тем не менее этот процесс — весьма простой и экономически выгодный и его используют как метод получения при условии, что имеется хорошее оборудование для фракционирования (пример а). [c.133]

    Значительные успехи были достигнуты и в регулировании реакции роста цепи при полимеризащ-1и диенов [8] и различных полярных мономеров, В результате проведенных опытов было показано, что стереоспецифическая полимеризация олефинов может быть проведена также и в гомогенной системе. При анионной или катионной гомополимеризации с управляемой реакцией роста цепи несомненно важную роль играет промежуточный комплекс мономера с противоионом. При таком методе получения стереорегуляр-ных полимеров удается снизить свободную энергию активации реакции роста цепи, ведущую к образованию полимера с определенной степенью тактичности. К сожалению, этот метод трудноосуществим при полимеризации неполярных, высоколетучих мономеров, какими являются, в частности, этилен и пропилен. Реакцию полимеризации этилена в высокомолекулярный разветвленный продукт долгое время осуществляли только по радикальному механизму при высоких давлении и температуре. Аналогичные опыты по радикальной полимеризации пропилена не имели успеха, так как на третнчном атоме углерода легко происходит передача цепн, вследствие чего образуется полимер небольшого молекулярного веса, который не может быть использован для получения пластмасс. Высокомолекулярные линейные полимеры этилена и пропилена можно синтезировать при низком давлении только при наличии твердой фазы катализатора. Мономер и металлорганический компонент сорбируются на поверхности твердой фазы, чем достигается ориентация каждой молекулы мономера перед ее присоединением к растущей полимерной цепи. [c.10]

    ФОТОПЛАСТЙНКИ, M. Фотографические материалы. ФОТОПЛЁНКИ, M. Фотографические материалы. ФОТОПОЛИМЕРИЗАЦИЯ, образование полимеров под действием света, гл. обр. УФ излучения. Осуществляется в газовой, жидкой и твердой фазах. К Ф. относят все фотохим. процессы получения полимеров независимо от их механизма - цепного (полимеризационного) или ступенчатого (поли-конденсационного). В первом случае свет служит только для инициирования р-ции, к-рая далее развивается как обычная полимеризация. Во втором случае каждый акт роста цепи требует поглощения кванта света. [c.174]

    Внутримолекулярные хи.мические превращения происходят под действием света, излучений высокой энергии, тепла, химических реагентов (которые ис входят в состав полимера) Внутримолекулярные превращения могут оказывать существенное влия-Иие на механизм реакции, приводить к образованию полимеров нежелательного строения. Однако в соответствующих условиях такие превращения позволяют по. 1учить наибо.псс эффективным способом потимеры нужного строения, синтез которых Другими путями невозможен Внутримолекулярные превращения под действием тепловой и лучистой энергни, а также под действием ряда химических реагентов в ряде случаев являются побочными реакциями, которые оказывают большое влияние на строение и свойства полимеров в процессе их получения, переработки н эксплуатации. [c.165]

    Пути биосинтеза (анаболизма) часто идут почти параллельно путям биологического распада (катаболизма) (рис, 7-1), Например, катаболизм начинается с гидролитического расщепления полимерных молекул,, и образующиеся в результате такого расщепления мономеры подвергаются дальнейшему распаду до более мелких, двух- и трехуглеродных фрагментов. Биосинтез же начинается с того, что из мелких молекул образуются мономерные единицы, которые затем соединяются друг с другом, образуя полимеры. Механизмы индивидуальных реакций биосинтеза и биологического распада также часто протекают почти параллельно. Реакции образования связи С—при биосинтезе связаны с реакциями разрыва связи С—С при катаболизме. Сходны также между собой реакции образования полимеров и гидролиза. Тем не менее в большинстве случаев между путями биосинтеза и биологического распада существуют отчетливые индивидуальные различия. Поэтому первый принцип биосинтеза гласит пути биосинтеза, хотя и связаны с катаболи-ческами путями, могут существенно отличаться от них и часто катализируются совершенно другим набором ферментов [c.456]

    Концепция определяющей роли кислотно-основных взаимодействий в катионной полимеризации базируется на том, что рассматриваемый процесс представляет разновидность широкого класса катионных реакций в неводных средах со всеми присущими им основными признаками. В рамках этой концепции и в качестве дополнения к ней следует рассмотреть и другие особенности катионной полимеризации изобутилена, отличающие ее от реакций низкомолекулярных соединений и других реакщ й образования полимеров. В обобщенной формулировке достижения в регулировании катионной полимеризации изобутилена и конструировании полимерных молекул получили название макромолекулярной (или молекулярной) инженерии [25, 247]. Становление этого многозначительного термина произошло вначале при рассмотрении радикальной и анионной полимеризации, а в период 1975-80 гг. и в катионной полимеризации. Макромоле-кулярная инженерия означает регулируемое конструирование головных и хвостовых групп, повторяющихся звеньев, микроструктуры, ММ и ММР, природы разветвлений, частоты сетки, блок-, графт- и звездообразных структур. Большинство из этих положений применимо и для ПИБ. Элементами макромолекулярной инженерии являются конролируемые элементарные акты (инициирование, обрыв, передача) и квазиживой механизм роста цепей. Так как этой теме посвящены известные обзоры [25, 247], можно ограничиться лишь кратким рассмотрением проблемы. Реализация элементов макромолекулярной инженерии связана с двумя исходными моментами направленным подбором комплексных каталитических систем, определяющих характер реакций инициирования, передачи и обрыва цепи, и близостью свойств исходного мономера и образующихся полимерных соединений из класса олефинов  [c.110]

    В соответствии с представлениями о механизме эмульсионной полимеризации Харкинса [221] и Юрженко [151] начальная систе содержит в водной фазе капли мономера, полученные при перемет, вании в присутствии эмульгатора основная часть эмульгатора нах дится в мицеллярном состоянии, инициатор растворен в воде. Полим ризация протекает в полимер-мономерных частицах, образующихся мицелл после попадания в них радикалов из водной фазы. Полимер, зацию условно разделяют на три стадии образование полимер-мономерных частиц, которое заканчивается в момент исчерпания эмульгатора, находящегося в мицеллярном состоянии и расходующегося на покрытие растущей поверхности частиц полимеризация при постоянном числе полимер-мономерных частиц в присутствии капель мономера, обеспечивающих подпитку частиц мономером через водную фазу завершающая стадия, которая начинается после исчерпания капель мономера. На основании этих представлений Смитом и Эвартом проведено количественное описание эмульсионной полимеризации [253, 254]. При выводе исходных уравнений делаются дополнительные упрощающие предположения на первой стадии остается постоянной суммарная площадь поверхности полимер-мономерных частиц и мицелл диффузия мономера через воду является быстрой и не лимитирует скорость полимеризации кон центрация мономера в полимер-мономерных частицах остается постоянной, пока в системе имеются капли мономера. [c.66]

    Ферменты, катализирующие матричный синтез нуклеиновых кислот, называются ДНК- или РНК-полимеразами. В некоторых случаях цепь мРНК может служить матрицей не только для синтеза белка, но и для синтеза ДНК. Этот процесс катализируется ферментом обратной транскриптазой. Каждый из трех синтезов биополимеров включает в себя три этапа инициацию — начало образования полимера из двух мономеров, элонгацию — наращивание полимерной цепи и терминацию — прекращение матричного синтеза. Механизмы синтеза ДНК одинаковы для прокариот и для эукариот. В их основе заложены принципы комплементарности азотистьгх оснований (А=Т и Г=Ц), обеспечивающие строгое соответствие нуклеотидной последовательности родительской и дочерней цепей ДНК. [c.450]

    Особое значение имеет механохимическое инициирование поли-меризационных процессов при диспергировании различных твердых тел металлов, солей, окислов, неметаллов и т. д. Возникающие при таком диспергировании активные центры (свободные радикалы, ионы, вакансии [65, 434] типа Р-центров, Р -центров, У-центров, в том числе и эмиттирующие электроны) способны в присутствии мономеров, полимеров или других реакционноспособных органических соединений. инициировать дальнейшие превращения этих компонентов по свободнорадикальному или иошому механизму. Такие превр.ащеняя приводят к образованию полимеров, сополимеров, металлоорганических соединений, органоминеральных сополимеров, продуктов прививки полимеров на поверхностях твердых тел, наполнителей и т. д. [c.173]


Смотреть страницы где упоминается термин Образование полимеров механизм: [c.239]    [c.507]    [c.69]    [c.187]    [c.60]    [c.117]    [c.184]    [c.327]    [c.74]    [c.299]    [c.348]    [c.55]    [c.68]    [c.41]    [c.7]   
Основы химии полимеров (1974) -- [ c.18 , c.20 ]




ПОИСК





Смотрите так же термины и статьи:

Механизм образования АТФ



© 2025 chem21.info Реклама на сайте