Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Олефинов, пиролиз для получения ацетилена

    Физико-химическая характеристика реакции получения ацетилена из метана. При нагревании метана и других углеводородов до очень высоких температур (пиролиз) образуется газовая смесь, в которой содержатся водород, этилен и другие олефины, ацетилен и высшие ацетиленовые углеводороды, ароматические углеводороды и непрореагировавший метан. Получается также сажа. Многочисленность продуктов указывает, что этот дроцесс сложный. Он включает, очевидно, ряд реакций, протекающих как параллельно, так и последовательно. Выделим из них реакцию образования ацетилена  [c.250]


    До второй мировой войны карбид кальция являлся практически единственным источником получения ацетилена для промышленных целей. Отсутствие разработанных методов не позволяло использовать для производства ацетилена большие ресурсы углеводородов нефти и природного газа, хотя в лабораториях научно-исследовательских институтов многих стран уже велись обширные исследования по определению условий превращения низших парафинов в ацетилен. Между тем пиролиз углеводородов для получения олефинов (этилена и пропилена), а также термический крекинг углеводородов уже давно получили промышленное развитие. Постепенное накопление теоретических и практических сведений позволило создать первые полупро-изводственные установки, а затем и крупное промышленное производство ацетилена на основе высокотемпературного пиролиза углеводородного сырья. [c.64]

    ПОЛУЧЕНИЕ НЕПРЕДЕЛЬНЫХ УГЛЕВОДОРОДОВ ПУТЕМ ПИРОЛИЗА. ОЛЕФИНЫ, АЦЕТИЛЕН И ДИОЛЕФИНЫ [c.137]

    Производство низших олефинов пиролизом различного углеводородного сырья характеризуется одновременным получением большой гаммы ценных непредельных углеводородов, диеновых, ароматических, производных ацетилена. Эти углеводороды содержатся в соответствующих фракциях в количествах, достаточных для их экономически обоснованного выделения в чистом виде с целью получения товарной продукции для органического синтеза. К таким углеводородам относятся ацетилен, аллен, метилацетилен, цикло- и дициклопентадиен, бензол, нафталин и др. Кроме того, низкая стоимость, высокая концентрация целевых продуктов, малое содержание сероорганических и практически отсутствие других гетероорганических соединений создают хорошие технологические и экономические предпосылки для переработки побочных продуктов пиролиза. Себестоимость вырабатываемых из пиролизного сырья продуктов (например, дициклопентадиена, бензола) на 15—25% ниже себестоимости. аналогичных продуктов, полученных традиционными процессами [c.27]

    При получении олефинов пиролизом углеводородов наряду с этиленом и пропиленом образуются в сравнительно небольших количествах (менее 2%) и высоконенасыщенные соединения, в основном ацетилен и его гомологи [4П. Наличие этих соеди-нений в пирогазе и в получаемых впоследствии его фракциях отрицательно сказывается на показателях процессов переработки олефинов снижается выход продуктов (процесс полимеризации), отравляются катализаторы (карбонилирование, гидратация и алкилирование), ухудшаются условия и безопасность эксплуатации установок из-за образования купренов. Исходя из этого, в настоящее время к чистоте олефинов предъявляются повышенные требования. [c.43]


    После успешного внедрения в промышленность начавшего развиваться примерно с 1894 г. производства ацетилена из карбида кальция вни,мание к пиро-генетическому способу на время ослабло. Только значительно позднее интерес к этому методу снова возрос в связи с увеличивающимся предложением дешевого органического сырья, как например природный газ. с.месь газообразных парафинов и олефинов крекинга, сырая нефть и различные ее погоны, тяжелые смолы и асфальты. Транспортировка метана, являющегося главной составной частью природного газа, невыгодна для многих районов его добычи, а применение его как топлива и источника сажи ограничено. Поэтому и были начаты поиски способов превращения метана в другае углеводороды. Однако для быстрого разложения метана требуется настолько высокая температура, что образование при этом парафинов и олефинов в больших количествах становится невоз.можньш хогя даже ароматические углеводороды могут быть получены при 1200°, все-таки наиболее важным способом использования. метана обещает быть конверсия его в ацетилен. Вследствие этого высокотемпературный крекинг метана и привлек к себе больше внимания, че.м другие пирогенетические процессы, предложенные для получения ацетилена. В некоторых странах Европы, не богатых запасами природных газов, была изучена также возможность пиролиза газов коксовых печей, водяного газа и содержащих метан смесей, получаемых из окисей углерода и водорода, нередко являющихся дешевыми побочными продуктами. Некоторый интерес как потенциальный источник ацетилена представляет крекинг дешевых нефтяных остатков, асфальтов и смол. Газообразные парафины и олефины и низкокипящие погоны представляют ценность для других целей, поэтому на них как на сырье для получения ацетилена обращалось меньше внимания. [c.38]

    Сроки и темпы перехода промышленного органического синтеза с угольного сырья на нефтегазовое и с ацетилена на низшие олефины в разных странах были не одинаковы. В странах Западной Европы, Японии и СССР преобладание низших олефинов в сырьевой базе отрасли стало заметным с 60-х гг. В США этилен и пропилен, полученные из газов крекинга при переработке нефти, применяли наряду с ацетиленом в химической промышленности уже в 20—30-е гг. [3], а современный процесс производства низших олефинов — термический пиролиз углеводородов с водяным паром — выделился из процессов нефтепереработки и превратился в основной промышленный метод получения этилена и пропилена в период 1920—1940 гг. Работы в области производства и химического использования нефтяного и газового сырья проводились в эти же годы и в СССР. Вскоре после окончания войны вступили в строй нефтехимические заводы в гг. Сумгаите, Грозном, Куйбышеве, Уфе, Саратове, Орске и других городах. На этих предприятиях синтетический этанол, изопропанол и ацетон вырабатывались на основе этилена и пропилена, полученных в процессе пиролиза углеводородного сырья [4]. [c.6]

    Получение ацетилена и олефинов (этилена и пропилена) при пиролизе жидких углеводородов в плазменной струе исследовано [19] на установке мощностью до 4000 кет. Кинетический и термодинамический анализ разложения углеводородов определил условия проведения процесса [20]. Конверсия сырья (низкооктанового бензина) в ацетилен и олефины составляла до 75%, причем соотношение ацетилен этилен менялось в зависимости от температуры. Затраты электроэнергии составляли 3,5—4,0 квт-ч на 1 кг суммы непредельных соединений. [c.365]

    Быстрому росту мировой промышленности органического синтеза в 20—30-х годах XX в. способствовали многие научно-технические достижения. Особенно важное значение имело развитие процессов крекинга и пиролиза нефти, переработки природных газов, производства карбида кальция и электролиза поваренной соли, позволившее обеспечить промышленность органического синтеза углеводородным сырьем—низшими олефинами и ацетиленом, а также хлором (для получения хлорорганических продуктов). [c.296]

    Как видно из схемы, газ пиролиза перед разделением предварительно очищается от тяжелых углеводородов, от НаЗ и СО2, органических соединений серы и влаги. Эти методы очистки были описаны выше. После подготовки газ с давлением 3,2 ,0 МПа охлаждается за счет испарения пропилена (хладоагент) до -35-45 °С. В деметанизаторе 6 сверху выделяется метановодородная фракция, используемая как топливный газ. Температура верха деметанизатора составляет -98 °С, что уменьшает потери этана с метаном. Газы пиролиза в качестве примесей содержат ацетилен, удаляемый вместе с этаном и этиленом из колонны 7 и метилаце-тилен (и пропадиен), выделяющийся из колонны И вместе с пропаном и пропиленом. Эти примеси праит-ствуют получению низших олефинов высокой степени чистоты (колонны 9 и 13). [c.678]

    При изучении термических реакций углеводородов необходимо считаться с процессом пиролиза ацетилена — особенно в связи с тем значением, которое приписывалось ему многими исследователями как промежуточному продукту при этих реакциях. В частности Berthelot считал ацетилен основным источником для всех синтетических процессов, имеющих место при процессах пиролиза. Огромное значение, которое приписывали ацетилену в образовании более крупных молекул, до некоторой степени упало в результате дальнейших исследований, указавших на важную роль в этом процессе олефинов и диолефинов. Тем не менее, ацетилен следует, повидимому, в. некоторых случаях рассматривать, как исходное вещество для получения ароматических углеводородов, образующихся во время пиролизе., особенно при разложении метана при весьма высоких температурах. Изучение реакций ацетилена представляет большой интерес также в связи, с тем, что при очень высоких температурах он стабильнее, чем какой-либо из других летучих углеводородов. Термодинамические расчеты показывают, что ниже 850° ацетилен вообще не может образоваться при пиролизе каких бы то ни было углеводородов. [c.96]


    Путем пиролиза смесей газообразных углеводородов (как насыщенных, так и ненасыщенных) при температуре 1000—1200° можно получать ароматические и олефиновые углеводороды в зависимости от объемных скоростей, начиная от 50 до 100 и даже более обратных минут Для получения высоких вьгходов ароматических углеводородов требуется меньшая объемная скорость при большей же скорости образуются олефины или диолефины. Реакцию можно вести в две или в большее число стадий, причем после каждой стадии жидкие масла или олефиновые углеводороды удаляются. Каждая стадия отличается От преды-дуп1ей тем, что температура в ней выше или же объемная скорость меньше. Реакционные камеры, ширина которых должна быть незначительной по сравне- нию с объемом, могут быть сконструированы из карборунда, графита или сплавов, устойчивых к действию нагревания. Если стенки покрыты огнеупором типа алюмосиликатов, то увеличивается количество образующегося нафталина. Среди промежуточных продуктов имеются пропилен, этилен и ацетилен, а К О нечные продукты представляют собой легкие масла, метан, водород и уголь. Например из газообразной смеси, состоящей из 45% метана, 24% этана, 21 %j пр Опана и 10% бутана, было получено 42,7 л легкого масла на каждую 1000 при работе в одну стадию и 144,4 л при работе в три стадии [c.205]

    Получение непредельных углеводородов из жидкого нефтяного сырья. В промышленном отношении перспективны также процессы получения ацетилена и этилена при пиролизе жидких углеводородов, бензина н сырой нефти, характеристики которых приведены в работах [80, 82—86, 172]. Эти процессы исследовались на установках мощностью до 4000 кет [86, 172]. Кинетический и термодинамический анализы разложения углеводородов определили условия проведения процессов [83]. Конверсия сырья (низкооктанового бензина) в ацетилен и олефины составляла до 75%, причем соотношение С2Н2 С2Н4 менялось в зависимости от температуры. Затраты электроэнергии составляли 4—5 кет ч на 1 кг непредельных соединений. Сопоставление показателей пиролиза бензина прямой гонки с концом кипения 150 °С в плазменной струе и окислительного пиролиза приведено в табл. Х.2. Проведен пиролиз в плазме и других продуктов переработки нефти, а также пиролиз сырой нефти [85]. Получены примерно такие же показатели, как и в случае пиролиза бензина. [c.233]

    В настояш ее время для получения из предельных газов активных, реакционноспособных олефинов или ацетилена намечаются еш е два пути окислительный крекинг газов, или окислительное дегидрирование, позво-ляюш ее сдвинуть равновесие дегидрирования в область более низких температур, и высокотемпературный пиролиз до смеси ацетилена с олефинами. Последний процесс детально изучался Тропшем и Эглоффом [7], показавшими, что при темнературах выше 1000° и давлении 50 мм парафиновые углеводороды могут быть превращены в смесь газов, богатую олефинами и ацетиленом. Результаты некоторых из опытов этих авторов приведены в табл. 3. [c.416]


Смотреть страницы где упоминается термин Олефинов, пиролиз для получения ацетилена: [c.19]    [c.187]    [c.19]    [c.61]    [c.68]   
Химия ацетилена (1947) -- [ c.41 ]




ПОИСК





Смотрите так же термины и статьи:

Ацетилен получение

Пиролиз олефинов

Получение непредельных углеводородов при помощи пиролиза. Олефины, ацетилен и диолефины

олефинов в ацетилены



© 2025 chem21.info Реклама на сайте