Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Сурьма фотометрическое определение в виде

    В качестве восстановителя для селена используют хлорид олова (II) [50—55], тиомочевину [56], аскорбиновую кислоту [57—59], солянокислый гидразин [60—65], ацетон в хлористоводородной среде [66], а для теллура —хлорид олова(II), гипофосфит натрия и гипофосфористую кислоту [67—69] и др. Для стабилизации золей используют гуммиарабик [62, 67, 70—72] и желатин [35, 61, 71, 73—76]. Для увеличения чувствительности фотометрического определения селена и теллура вводят при восстановлении сенсибилизирующие добавки в виде ионов меди, сурьмы и висмута [35, 68, 74, 75, 77—80]. [c.227]


    Свинец и сурьму, которые в некоторых случаях мешают фотометрическому определению фосфата, вызывая помутнение раствора при добавлении реагентов, в частности в сернокислой среде, можно выделить из кислого раствора на платиновом катоде. Таким же методом можно выделить и медь. Кроме того, можно выделить свинец из азотнокислых растворов в виде двуокиси на платиновом аноде. [c.11]

    Подобно галлию и индию, для галогенидных комплексов таллия характерно образование экстрагируемых бензолом ионных ассоциатов с красителями группы родаминов. Предложено качественное открытие ионов ТР+ с родамином С в солянокислой среде [221, 265]. Эта реакция использована и для количественного фотометрического определения [297], а для отделения от мешающих примесей таллий предварительно экстрагирует в виде дитизоната [298]. Несмотря на некоторые указания на то, что флуоресцентный вариант этого метода не имеет преимущества перед колориметрированием [299], он был успешно применен для анализа йодида натрия [37, 109]. После предварительного экстракционного отделения эфиром реакция с родамином С в 0,1 н. бромистоводородной кислоте использована при определении таллия в рудах [146]. Высокочувствительный метод его определения в минеральном сырье (тоже с предварительной эфирной экстракцией) основан на взаимодействии бромида одновалентного таллия с родамином 6Ж [44] (см. табл. 1У-17). Отмечена также реакция солянокислых растворов иона ТР+ с родамином ЗВ и с родамином Ж [84]. Как и для сурьмы, нет литературных указаний на флуоресцентные реактивы, содержащие р-дикетонную функционально-аналитическую группу для иона Т1+ [100]. [c.180]

    Пример 2. Вычислить рациональную массу (навеску) для определения сурьмы экстракционно-фотометрическим методом в виде толуольного [c.104]

    Для отделения мышьяка, сурьмы, меди, свинца, ртути, кадмия и других ионов от олова используют осаждение их в виде сульфидов в присутствии фто-рид-ионов, которые связывают олово. При фотометрическом определении кобальта в виде хлоридного или роданидного комплексов вредное влияние железа (П1) устраняют, связывая его в прючный фторидный комплекс. [c.267]

    Сурьму в висмуте определяют экстракционно-фотометрически [454, 657, 906], полярографическим [1348], спектрографическим [477, 809, 1117] и активационным [830, 1204, 1239, 1659] методами. Поскольку висмут не мешает экстракционно-фотометрическому определению 8Ь с применением кристаллического фиолетового [454] и родамина С [657], то ее непосредственно экстрагируют в виде окрашенных ионных ассоциатов из раствора, полученного растворением пробы, и измеряют оптическую плотность экстракта. В полярографическом методе [1348] сначала выделяют В1 с п0Д10щью катионнообменной смолы и в оставшемся растворе определяют 8Ь [c.126]


    Можно привести много примеров избирательной экстракции одного микрокомпонента для его последующего фотометрического определения, но ограничимся лишь двумя. Избирательная экстракция сурьмы в виде ниридиннодидного комплекса эфиром [2, 21] и олова в виде диэтилдитиокарбамината из сернокислого раствора хлороформом [22, 23] позволяет определять микропримеси этих элементов высокочувствительными реакциями с триокси-флуоронами даже в тех металлах, которые сами реагируют с этими реактивами — в германии, ниобии, тантале, титане и др. [c.9]

    Комплексы с перечисленными основаниями используются для экстракционно-фотометрического определения и разделения многих металлов. Описаны методы определения меди [14, 24—31, 33, 36], железа [13, 14, 20, 44, 50, 56, 58], кобальта [12, 19,20, 42, 45, 47], таллия [48], сурьмы [40], рения [66], палладия [43, 67] и ряда других металлов. Осуществляется разделение ряда платиновых металлов, рения и молибдена [14]. В ряде случаев разделение производится путем создания различной кислотности водной фазы перед экстракцией. Так, кобальт извлекается в виде пиридин-роданидного комплекса при pH около 6, а никель — при pH 4 [34]. Большое значение имеет выбор экстрагента. Так, пиридин-роданидный комплекс палладия хорошо извлекается хлороформом, а рутений в этих условиях не извлекается. Для его экстракции применяют смесь трибутилфосфата и циклогексано-на [35]. 11звестно использование тройных комплексов для открытия ряда анионов, таких как роданид, иодид, бромид, цианат, цианид [36]. [c.115]

    Распространены и другие гибридные методы. Нельзя не назвать экстракционно-фотометрическое определение элементов и соединений— фотометрирование окрашенного соединения, экстрагированного из водной фазы или образованного в экстракте путем добавления какого-либо реагента после экстракции. К экстракционно-фотометрическим не следует относить методы, включающие фотометрическое определение после реэкстракции или разложения экстракта. Советскими химиками-аналитикамч разработано огромное число экстракционно-фотометрических приемов, многие из которых получили массовое применение как в СССР, так п в других странах. Это, например, определение сурьмы в виде ассоциата ее хлоридного комплекса с кристаллическим фиолетовым или другими основными красителями. Можно назвать также определение ниобия с роданид-ионом, титана с роданидом и диантипирилмета-ном. Эффективны и аналогичные экстракционно-люминесцентные методы. В сочетании с экстракцией применяются атомно-абсорб-ционные и иламенно-фотометрические методы, эмиссионный спектральный анализ, полярографию. [c.94]

    Для количественного фотометрического определения сурьмы в виде Н5ЬС1б описан родамин С [41], а также метиловый фиолетовый [42, 43]. Определение требует тщательного соблюдения определенных условий [43, 44], так как сурьма экстрагируется только в нггидролизованной форме. Между тем прп кислотности, оптимальной для экстракции, сурйма довольно быстро гидролизует. [c.352]

    Содержание кремния в некоторых полупроводниковых материалах очень мало, поэтому при анализе сурьмы, галлия, индия и таллия [148] предварительно отделяют основные компоненты, а затем определяют кремний в виде синего кремнемолибденового комплекса после экстракции его изоамиловым спиртом. При этом сурьму отгоняют в виде трехбромистой, отделяют галлий в виде оксихино-лината, индий в виде трихлорида, а таллий в виде окиси. При определении кремния в силуминах в качестве восстановителя применяют эйконоген —ЭХТ-кислоту [149]. Рекомендовано при определений кремния в чистой меди [150] применять раствор молибдата аммония с определенным значением pH. Разработаны методы определения кремния в продуктах цинкового производства [151] и экстракционно-фотометрический метод определения кремния в ниобии, тантале [152] и металлическом никеле [153]. Экстракцию проводят н-бутанолом, хотя удобнее применять изоамиловый спирт. Экстракция применена также при определении кремния в чистой воде [154], в морской воде [155], в железе и стали [156], в хроме высокой чистоты [157], в плавиковом шпате [158] и других объектах. [c.128]

    Теллур образует окращенное соединение с диэтилдитиокарбаматом, экстрагируемое четыреххлористым углеродом. В присутствии цианида калия и комплексона III вместе с теллуром экстрагируются в виде диэтилдитиокарбаматов только висмут, таллий и сурьма. Экстракт соединения теллура с диэтилдитио-4 арбаматом затем встряхивают с раствором соли меди, при этом образуется интенсивноокрашенный диэтилдитиокарбамат меди в I4. Оптическая плотно сть раствора, содержащего 1 мкг меди в виде диэтилдитиокарбамата, равна оптической плотности раствора, содержащего 7 мкг теллура в виде такого же соединения. Таким путем повыщается чувствительность фотометрического определения. [c.350]


    Фотометрическое определение мыигьяка в виде лшшьяковомолибденовой сини находит широкое применение. Метод используется для определения мышьяка в чугуне и стали [13, 34, 40, 43], меди и ее сплавах [17, 23, 44], сплавах серебра [45 , в олове [16], сурьме [2, 14, 17, 47], висмуте [5], свинце ]8, 22, 23], цинке [23, 33], ниобии, ванадии, галлии, индии и таллии [2], кремнии [2, 25], германии [25], селене [29, 48], теллуре [28], боре [19], в силикатных минералах [1, 30], нефтепродуктах [10[, угле [9], азотной кислоте [49[, морской воде [391, органических веществах [15, 24, 27, 50] VI биологических материалах [3, 4, 32, 51, 52]. [c.263]

    Сурьму О 3-10 %) и ряд других примесей в пятиокиси ванадия предложено определять спектральным методом с испарением в воздухе и использованием разрядной трубки с полым катодом [494]. Фотометрический метод с предварительной экстракцией 8Ь в виде пиридин-иодидного комплекса и последующим фотометри-рованием в виде фенилфлуороната позволяет определять в пятиокиси ванадия до 5 10 % 8Ь [563]. Активационный метод определения 8Ь в пятиокиси ванадия, включающий выделение 8Ь из облученного материала, характеризуется высокой чувствительностью (1-10 —1-10 з) и удовлетворительной точностью ( 5, . = = 0,1 0,2) [145]. [c.126]

    Фотометрические методы определения мышьяка в виде мышья-ковомолибдеповой сини находят широкое применение. Они используются для определения мышьяка в его соединениях [529], железе, чугуне и стали [48, 540, 666, 698, 773, 785, 790, 885, 917, 943, 949, 952, 996, 1131-1133, 1147], ферросплавах [217, 702, 703, 1203], меди и медных сплавах [158, 195, 197, 216, 515, 562, 815, 886, 952, 1043, 1133, 1209, 1210], рудах и продуктах медного и свинцово-цинкового производства [21, 81], железных рудах [652, 822, 949, 1108], свинце [158, 264, 627, 695, 886, 926, 952, 990, 1133], серебре и его сплавах [1070], Вольфраме и его рудах [1203], олове [307, 585, 661, 1208], сурьме [91, 197, 198, 264, 284, 837, 886, 894, 952, 956], висмуте [265, 764], цинке [158, 627, 926, 952], ниобии и ванадии [284], галлии [284, 2881, индии [284, 289, 430], таллии [284, 287], кремпии [284, 872], германии ]б99, 700, 872], селене [637, 1016, ИЗО], теллуре [758], хроме и его окислах [198, 216], алюминии [144], кадмии [158], олове [886], молибдене и его окислах [459], никеле [402, 562], боре [893], уране [661, 760, 849, 928], минералах [415, 869, 994], пиритах и пиритных огарках [302, 491], фосфорной [940, 941], азотной [892], серной [939] и соляной [197, 452] кислотах, природных водах [785, 942, 993], дистиллированной воде [452], фосфатах [942] и фосфорсодержащих продуктах [980, 1091], силикатах и силикатных породах [869, 942, 964, [c.61]

    Метод основан на окислении серы до сульфатной при растворении металла в смеси соляной кислоты и брома, удалении сурьмы в виде бромида, восстановлении 504 до смесью нодистоводородной кислоты и гипофосфита натрия с последующей отгонкой сероводорода в токе азота. Определение заканчивается фотометрическим методом по реакции образования сульфида свинца. [c.239]

    Пэлэлэу и др, [54] разработали фотометрический метод определения сурьмы в колчеданах. Окрашенное комплексное соединение сурьмы с метиловым фиолетовым экстрагируют бензолом. Янушек [55] разработал фотометрический метод определения сурьмы в сером чугуне в виде йодидного комплексного соединения. Шетковский [c.25]


Смотреть страницы где упоминается термин Сурьма фотометрическое определение в виде: [c.104]    [c.112]    [c.12]    [c.112]    [c.345]    [c.92]    [c.92]    [c.141]    [c.158]    [c.271]    [c.189]    [c.185]    [c.20]    [c.25]   
Комплексные соединения в аналитической химии (1975) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Сурьма определение фотометрическое



© 2024 chem21.info Реклама на сайте