Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Сурьма определение фотометрическое

    Применяют для микрокристаллоскопических реакций для обнаружения сурьмы, висмута, олова, ртути для фотометрического определения нитрита, для гравиметрического определения вольфрама. [c.115]

    Пример 2. Вычислить рациональную массу (навеску) для определения сурьмы экстракционно-фотометрическим методом в виде толуольного [c.104]

    Раствор иодида калия с аскорбиновой кислотой. Применяют при фотометрическом определении сурьмы. [c.63]


    Для этих целей в основном используют нейтронно-активационный (табл. 54) и спектральные методы. Разработан также фотометрический метод определения 8-10 —1-10 % натрия в сурьме [22]. [c.163]

    Для фотометрических определений сурьмы в рудах растворяют в воде 10 г тиомочевины и 150 г иодида калия и разбавляют раствор водой в мерной колбе до 1 л. Для определения сурьмы в латунях (и в меди), а также в сплавах никеля готовят раствор 120 г иодида калия в 400 мл воды, затем 40 г гипофосфита натрия (фосфорноватисто- [c.40]

    Используется в качестве восстановителя при определении мыщьяка, при фотометрическом определении сурьмы в цветных металлах (для удаления меди и мыщьяка). [c.61]

    Для фотометрического определения меди (И) применяют 0,1—0,5 %-ные водные растворы. Для определения висмута или теллура (IV) применяют 0,2 %-ный раствор. Для определения сурьмы в рудах готовят 1 %-ный раствор в воде. Для экстракции и определения следов меди в ра- [c.151]

    Для фотометрических определений бора применяют 0,02 %-ный раствор морина в этаноле или ацетоне при определении циркония - 0,2 %-ный раствор в этаноле для флуориметрического определения сурьмы и олова применяют 0,05 %-ный раствор морина. [c.174]

    Методы, основанные на образовании ионных ассоциатов анионными комплексами сурьмы(1П) с катионами основных красителей. Эта группа экстракционно-фотометрических методов несколько проще, чем выше рассмотренная, так как не требует предварительного окисления Sb(III) до Sb(V) и удаления избытка окислителя. Однако по селективности определения Sb эти методы ус- [c.52]

    II) и других металлов, образующих с пиридином в присутствии тиоцианата и других анионов малорастворимые соли для отделения лития от калия и натрия при фотометрическом определении меди (II) и сурьмы (III), а также для обнаружения элементарной серы. [c.249]

    Применяется при фотометрическом определении сурьмы. [c.251]

    Для восполнения этого пробела написана настоящая монография. В ней сделана попытка объективно рассмотреть и оценить все методы определения, отделения и обнаружения сурьмы и методы определения примесей в сурьме высокой чистоты и ее соединениях. Особое внимание уделено современным, наиболее надежным, быстрым, высокопроизводительным инструментальным методам, а также методам, характеризующимся высокой чувствительностью и точностью. В книге особенно подробно изложены новые и наиболее перспективные методы определения сурьмы в разнообразных промышленных и природных материалах, в том числе такие физические и физико-химические методы, как спектральные и химико-спектральные, рентгенофлуоресцентные, атомно-абсорбционной и атомно-эмиссионной спектрофотометрии, фотометрические и экстракционно-фотометрические и т. д. Рассматриваются также перспективы дальнейшего развития отдельных методов. [c.6]


    Экстракционно-фотометрическое определение сурьмы с применением бриллиантового зеленого [327] [c.49]

    Методы, основанные на образовании сурьмой(У) окрашенных внутрикомплексных соединений. Сурьма(У) также способна образовать с рядом органических реагентов внутрикомплексные соединения, пригодные для ее фотометрического определения. Высокой чувствительностью характеризуются цветные реакции Sb(V) с пирокатехиновым фиолетовым [103, 513], с которым она [c.56]

    Для определения примесей в сурьме и ее соединениях используются спектральные, фотометрические, полярографические, атомно-абсорбционные, люминесцентные и многие другие методы. Однако наибольшее значение имеют спектральные методы, позво-ляюш ие одновременно определять большое число примесей [479, 682, 801]. Ошибка определения примесей прямыми спектральными методами зависит от их содержания, анализируемого материала, используемой аппаратуры и ряда других факторов и колеблется от 3 —5 до 30 —50% чаще всего она находится в пределах 10 —20%. Некоторые характеристики прямых спектральных методов определения примесей в сурьме и ее соединениях приведены в табл. 15. [c.160]

    Фотометрические методы определения примесей в сурьме и ее соединениях [c.165]

    Фотометрическое определение сурьмы......... [c.4]

    Фотометрическое определение сурьмы [54 [c.72]

    Экстракционно-фотометрическому определению 30 мкг сурьмы с использованием 2-ХАН-2 [386] в иодидной среде не мешают 10= -кратные количества А1, Ве, Се, Со, Сг, Оа, 1п, Mg, Мп, N1, ТЬ, и(У1), 2п 500-кратные—А5(П1), Ре(П), Ое, Ке(УП), 5п(1У), 2г 200-кратные — С(1, Hg, Мо, ТЬ 100-кратные — У(1У) 20-кратные количества В1 и Определению 40 мкг сурьмы в бромидных средах не мешают 10 -кратные количества А1, Ве, Се(1П), Со, Сг(1П), Ре(П, 1П), Оа, 1п, М , Мп, N1, Рс1, и(У1), 2п 500-кратные количества А5(1П), Ое, Ке(УП), ТЬ 400-кратные количества 5п(1У) 250-кратные количества В1, Си, Сс1, Н , Мо, Т1, У(1У), [c.132]

    Экстракционно-фотометрический метод был применен нами для определения мышьяка в электролитической меди, бронзе, сурьме и продажной соляной кислоте. Методика работы приводится ниже. [c.279]

    Раствор с аскорбиновой кислотой применяют при фотометрическом определении сурьмы. 1 г аскорбиновой кислоты растворяют в 100 мл воды и добавляют 12 г KI раствор должен быть бесцветным. [c.60]

    Сурьма(1П) при облучении ультрафиолетовым светом в солянокислотных растворах количественно окисляется до сурьмы(У) 132]. Фотохимическое окисление сурьмы(1П) использовано для последующего люминесцентного определения с люминолом и для экстракционно-фотометрического определения. [c.93]

    Часть определений осуществлялась фотометрическими и спектрофотометрическими методами определение железа в серной кислоте и медном купоросе, малых количеств мышьяка, сурьмы, висмута, никеля, олова и фосфора в различных продуктах. Применяли фотоэлектроколориметры ФЭК-56, ФЭК-Н-57, спектрофотометр СФ-4А. [c.151]

    Соединения ацидокомплексов металлов с основными красителями. Возможности фотометрического определения ряда элементов, в особенности бора, сурьмы и тантала, значительно улучшились с разработкой методов, основанных на экстракции соединений их ацидокомплексов с основными красителями. В описанных [c.349]

    Растворяют 250 мг реактива в 50 мл разбавленной (1 1) соляной кислоты. Для определения таллия (III) применяют 0,2 7о-ный раствор в 2 н. растворе НС1. Золото определяют фотометрически, применяя 0,04 7о-ный водный раствор. Для качественных реакций применяют 0,01 %-ный водный раствор. Сурьму определяют фотометрически с 0,02 %-ным раствором в 1 М растворе НС1. Рений определяют с 6,6" 10 М раствором родамина С при pH 0.8, (НзР04). [c.195]

    Для отделения мышьяка, сурьмы, меди, свинца, ртути, кадмия и других ионов от олова используют осаждение их в виде сульфидов в присутствии фто-рид-ионов, которые связывают олово. При фотометрическом определении кобальта в виде хлоридного или роданидного комплексов вредное влияние железа (П1) устраняют, связывая его в прючный фторидный комплекс. [c.267]

    Анионы комплексных кислот — анионы ацидокомплексов типа НРеСи, Н2Со(ЗСМ)4, НЗЬС1б, которые сочетаются, наиример, с катионами основных красителей. Так, ионный ассоциат 5ЬС1б с катионом I хорошо экстрагируется бензолом и используется для качественного обнаружения и количественного фотометрического определения сурьмы. [c.579]

    Методы, основанные на образовании сурьмой(1П) окрашенных внутрикомплексных соединений. Сурьма(ПТ) способна одинаково легко образовывать внутрикомплексные соединения как с кислородсодержащими, так и с серусодержащими органическими реагентами. В связи с зтим для Sb(III) предложено большое число органических реагентов, образующих с ней внутрикомплексные соединения, пригодные для ее фотометрического определения. Общим недостатком этой группы фотометрических методов является значительно меньшая селективность определения Sb по сравнению с методами, основанными на образовании ионных ассоциатов анионом Sb lj с катионами основных красителей. [c.54]


    Для определения 0,012—0,26% Аи в свинцовых и оловянных припоях применяют фотометрический метод [856], а 0,1—50% Аи в золотом припое определяют рентгенофлуоресцентным методом [1092]. В покрытиях по молибдену > 0,01 мкг/мл Аи определяют каталитически, а 0,22—1,03% Аи — полярографически [535, 667] в покрытиях по вольфраму золото определяют фотометрически при помощи вариаминового синего (см. главу 6 ) [633] и и полярографически [535, 667] (0,22—l,03%Au). В кеках золото определяют экстракционно-фотометрически при помощи диантипирилпропилметана [72] (см. главу 6) и полярографически [51] (0,13—1,86% Аи). Известны методы анализа прочих продуктов известковой щебенки, хвостов флотации, штейнов [197], силикатного кирпича [939], промежуточных продуктов свинцовоцинкового производства [110] (см. главу 6) огарков, хвостов [35], сырья с высоким содержанием сурьмы и таллия [449], (см. главу 6) веркблея, штейна [1177], пробирных корточек [180], рубинового стекла [1141], эмульсий фотослоев [4], монет [895, 1532], эптаксиальных пленок [131], продуктов нефтепереработки [874], ацетилцеллюлозы [308], полиэтилена [1414]. [c.204]

    Косвенные фотометрические методы определения сурьмы. Из косвенных фотометрических методов определения ЗЬ следует отметить метод, основанный на использовании в качестве реагента 1,10-фенантролината Ге(1И), который взаимодействует с ЗЬ(П1) с образованием интенсивно окрашенного фенантролината Ге(П). Оптическую плотность измеряют при 530 нм (е = 2,22-10 ). Определению ЗЬ мешают восстановители и окислители. Метод применен для определения ЗЬ в трехокисях Аз и В [1396]. [c.57]

    Сурьму О 3-10 %) и ряд других примесей в пятиокиси ванадия предложено определять спектральным методом с испарением в воздухе и использованием разрядной трубки с полым катодом [494]. Фотометрический метод с предварительной экстракцией 8Ь в виде пиридин-иодидного комплекса и последующим фотометри-рованием в виде фенилфлуороната позволяет определять в пятиокиси ванадия до 5 10 % 8Ь [563]. Активационный метод определения 8Ь в пятиокиси ванадия, включающий выделение 8Ь из облученного материала, характеризуется высокой чувствительностью (1-10 —1-10 з) и удовлетворительной точностью ( 5, . = = 0,1 0,2) [145]. [c.126]

    Сурьму в висмуте определяют экстракционно-фотометрически [454, 657, 906], полярографическим [1348], спектрографическим [477, 809, 1117] и активационным [830, 1204, 1239, 1659] методами. Поскольку висмут не мешает экстракционно-фотометрическому определению 8Ь с применением кристаллического фиолетового [454] и родамина С [657], то ее непосредственно экстрагируют в виде окрашенных ионных ассоциатов из раствора, полученного растворением пробы, и измеряют оптическую плотность экстракта. В полярографическом методе [1348] сначала выделяют В1 с п0Д10щью катионнообменной смолы и в оставшемся растворе определяют 8Ь [c.126]

    Гросгейм-Криско [619] разработал быстрый и простой фотометрический метод определения 0,01—0,8% висмута в продажном свинце. Для уничтожения желтой окраски от сурьмы (которой может содержаться до 6%) и предотвращения обра- [c.125]

    Фотометрические методы определения мышьяка в виде мышья-ковомолибдеповой сини находят широкое применение. Они используются для определения мышьяка в его соединениях [529], железе, чугуне и стали [48, 540, 666, 698, 773, 785, 790, 885, 917, 943, 949, 952, 996, 1131-1133, 1147], ферросплавах [217, 702, 703, 1203], меди и медных сплавах [158, 195, 197, 216, 515, 562, 815, 886, 952, 1043, 1133, 1209, 1210], рудах и продуктах медного и свинцово-цинкового производства [21, 81], железных рудах [652, 822, 949, 1108], свинце [158, 264, 627, 695, 886, 926, 952, 990, 1133], серебре и его сплавах [1070], Вольфраме и его рудах [1203], олове [307, 585, 661, 1208], сурьме [91, 197, 198, 264, 284, 837, 886, 894, 952, 956], висмуте [265, 764], цинке [158, 627, 926, 952], ниобии и ванадии [284], галлии [284, 2881, индии [284, 289, 430], таллии [284, 287], кремпии [284, 872], германии ]б99, 700, 872], селене [637, 1016, ИЗО], теллуре [758], хроме и его окислах [198, 216], алюминии [144], кадмии [158], олове [886], молибдене и его окислах [459], никеле [402, 562], боре [893], уране [661, 760, 849, 928], минералах [415, 869, 994], пиритах и пиритных огарках [302, 491], фосфорной [940, 941], азотной [892], серной [939] и соляной [197, 452] кислотах, природных водах [785, 942, 993], дистиллированной воде [452], фосфатах [942] и фосфорсодержащих продуктах [980, 1091], силикатах и силикатных породах [869, 942, 964, [c.61]

    Фотометрическое определение в рудах в форме сульфата [745]. Навеску руды разлагают смесью азотной и соляной кислот и раствор выпаривают с серной кислотой. Осаждают медь раствором тиосульфата натрия. При этом железо восстанавливается до двухвалентного состояния. Измеряют оптическую плотность полученного раствора Со804 (после фильтрования) при 520 ммк. Не мешают мышьяк, сурьма, магний, алюминий, кальций, ци к, кадмий, натрий, калий и титан. Допустимо до 0,5 мг/мл марганца и 0,3 мг/мл вольфрама. Мешают хром и ванадий собственной окраской. При больших количествах никеля оптическую плотность измеряют при двух длинах волн— при 400 и 520 ммк и затем вычисляют содержание кобальта. [c.180]

    Можно привести много примеров избирательной экстракции одного микрокомпонента для его последующего фотометрического определения, но ограничимся лишь двумя. Избирательная экстракция сурьмы в виде ниридиннодидного комплекса эфиром [2, 21] и олова в виде диэтилдитиокарбамината из сернокислого раствора хлороформом [22, 23] позволяет определять микропримеси этих элементов высокочувствительными реакциями с триокси-флуоронами даже в тех металлах, которые сами реагируют с этими реактивами — в германии, ниобии, тантале, титане и др. [c.9]

    Комплексы с перечисленными основаниями используются для экстракционно-фотометрического определения и разделения многих металлов. Описаны методы определения меди [14, 24—31, 33, 36], железа [13, 14, 20, 44, 50, 56, 58], кобальта [12, 19,20, 42, 45, 47], таллия [48], сурьмы [40], рения [66], палладия [43, 67] и ряда других металлов. Осуществляется разделение ряда платиновых металлов, рения и молибдена [14]. В ряде случаев разделение производится путем создания различной кислотности водной фазы перед экстракцией. Так, кобальт извлекается в виде пиридин-роданидного комплекса при pH около 6, а никель — при pH 4 [34]. Большое значение имеет выбор экстрагента. Так, пиридин-роданидный комплекс палладия хорошо извлекается хлороформом, а рутений в этих условиях не извлекается. Для его экстракции применяют смесь трибутилфосфата и циклогексано-на [35]. 11звестно использование тройных комплексов для открытия ряда анионов, таких как роданид, иодид, бромид, цианат, цианид [36]. [c.115]

    Введение третьего компонента (органического основания или его ониевой соли) увеличивает прочность или экстрагируе-мость даже сравнительно слабых комплексов — таких, например, как роданидные и галогенидные. Тройные комплексы часто трудно растворяются в воде, но хорошо растворяются в неполярных органических растворителях. На основе этих реакций разработано большое количество экстракционно-фотометрических методов определения титана, ниобия, железа, сурьмы, рения, осмия и других ионов. [c.99]

    Распространены и другие гибридные методы. Нельзя не назвать экстракционно-фотометрическое определение элементов и соединений— фотометрирование окрашенного соединения, экстрагированного из водной фазы или образованного в экстракте путем добавления какого-либо реагента после экстракции. К экстракционно-фотометрическим не следует относить методы, включающие фотометрическое определение после реэкстракции или разложения экстракта. Советскими химиками-аналитикамч разработано огромное число экстракционно-фотометрических приемов, многие из которых получили массовое применение как в СССР, так п в других странах. Это, например, определение сурьмы в виде ассоциата ее хлоридного комплекса с кристаллическим фиолетовым или другими основными красителями. Можно назвать также определение ниобия с роданид-ионом, титана с роданидом и диантипирилмета-ном. Эффективны и аналогичные экстракционно-люминесцентные методы. В сочетании с экстракцией применяются атомно-абсорб-ционные и иламенно-фотометрические методы, эмиссионный спектральный анализ, полярографию. [c.94]

    Названные выше особенности ионов фтора обусловили очень широкое его применение для маскирования многих элементов. Особенно часто рекомендуют фторид-ион для маскирования железа (III), которое мешает определению многих элементов, например при роданидном методе определения кобальта. Удобно применение фторидов также для маскирования сурьмы, которая в ряде реакций мешает фотометрическому определению висмута. В этом, а также в некоторых других случаях иногда рекомендуют применять забуферированный фторид, а именно HBF4. Здесь концентрация свободных ионов фтора меньше и он не действует на комплекс определяемого элемента. [c.247]


Смотреть страницы где упоминается термин Сурьма определение фотометрическое: [c.161]    [c.22]    [c.104]    [c.141]    [c.158]    [c.271]    [c.189]    [c.673]    [c.132]    [c.127]   
Гетероциклические азотосодержащие азосоединения (1982) -- [ c.0 ]

Гетероциклические азотосодержащие азосоединения (1982) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Бриллиантовый зеленый, фотометрическое определение сурьмы

Сурьма фотометрическое определение в виде

Фотометрическое определение селена в арсениде галлия, мышьяке, индии и сурьме

Фотометрическое определение селена в сурьме

Фотометрическое определение серы в сурьме

Фотометрическое определение сурьмы в алюминии

Фотометрическое определение сурьмы в галлии

Фотометрическое определение сурьмы в индии, галлии и таллии

Фотометрическое определение сурьмы в сплавах индий — цинк, индий — галлий

Фотометрическое определение сурьмы в таллии



© 2024 chem21.info Реклама на сайте