Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ксилол изомеры содержание в ксилоле и сыром бензоле III

    При переработке коксохимического сырого бензола триметилбензолы концентрируются в сольвентах цехов ректификации и установок по производству инден-кумароновых смол из тяжелого бензола. Сольвенты, как правило, используют в качестве технических растворителей, и поэтому состав их может колебаться в широких пределах. По данным хроматографического анализа (табл. 44), в сольвентах в среднем содержится 7—19% мезитилена, 4,5— 18% псевдокумола и 0,5—3,0% гемимеллитола. Кроме того, в них присутствуют от 2 до 87о изомеров этилтолуола, ксилол, этилбензол, гидринден, некоторые углеводороды насыщенного характера. В сольвентах, полученных из тяжелого бензола, остается еще от 2 до 5% непредельных соединений. По отношению к сумме триметилбензолов содержание отдельных компонентов распределяется следующим образом 44—50% псевдокумола, 41—51% мезитилена и 5—9% гемимеллитола. Выход каменноугольного сольвента составляет 1—3% от сырого бензола. [c.264]


    Значение производства ароматических углеводородов постоянно увеличивается, так как применение получаемых на их базе химических продуктов и синтетических полимеров непрерывно расширяется. Основными ароматическими углеводородами являются бензол, ксилолы, в том числе изомеры ксилола (параксилол, ортоксилол, метаксилол), толуол. Конфигурация комплекса ароматических углеводородов все время-видоизменяется. Это зависит от вида используемого сырья, соотношения спроса на отдельные ароматические углеводороды и цен на них. Ароматические углеводороды получаются на нефтеперерабатывающих заводах в процессе риформинга, направленного специально на увеличение содержания бензола, толуола и ксилолов в рафинате. Кроме этого ароматические углеводороды получаются на нефтехимических предприятиях в составе пироконденсата при работе этиленовых установок на жидком углеводородном сырье, а также на коксохимических предприятиях из легкого газойля коксования углей. Ароматические углеводороды извлекаются из рафинатов или пироконденсата методами экстракции, экстрактивной дистилляции, адсорбции. Кроме этого существуют различные методы взаимного превращения ароматических углеводородов, например, деметилирование толуола в бензол диспропорционирование смеси толуола и ксилолов в бензол и изомеры ксилолов изомеризация ксилолов. Разработаны также процессы получения ароматических углеводородов из смеси пропана и бутана. [c.130]

    Пропуская при 550 °С и скорости подачи 0,6 Ч п-ксилол через слой аморфного алюмосиликата, получили с 50%-ным выходом смесь ксилолов, близкую к равновесной [33] (составы равновесных смесей привед нь в гл. I), При изомеризации технической ксилольной фракции с высоким содержанием м-кси-лола в присутствии аморфного-алюмосиликата при 515°С обнаружена более высокая скорость образования ара-изомера по сравнению с орго-изомером. Если при атмосферном д авлении крекингу (с образованием бензола) и перераспределению алкильных групп (с образованием бензола и триметилбензолов) подвергалось более 30% сырья, то при пониженном давлении [c.100]

    Нефтяной ксилол — смесь четырех изомеров ароматических углеводородов g — образуется в процессах каталитического ри-формивга в последние годы его производят путем диспропорционирования толуола и трансалкилирования толуола и триметил-бензолов. Ароматические углеводороды g служат главным образом для получения изомеров ксилола (около 75% от общего производства), 20% применяют в качестве растворителя и небольшие количества — в качестве компонента автомобильных бензинов [10]. Из ароматических углеводородов g наибольшее применение находят и-ксилол — исходное сырье для получения синтетических волокон типа лавсан, и о-ксилол, используемый для синтеза фталевого ангидрида. В связи с низким содержанием п- и о-ксилола в техническом ксилоле (около 20% каждого) разработаны и нашли широкое промышленное применение специальные процессы каталитической изомеризации ароматических углеводородов g, позволяющие превращать. 1/-КСИЛ0Л, а если это необходимо, то и этилбензол в и- и о-ксилол. В последние годы основное количество о- и и-ксилола получают изомеризацие ароматических углеводородов С . [c.8]


    Ксилол, производимый в ректификационных цехах, является смесью трех изомеров орто-, мета- и пара-ксилола (СбН4(СНз)2) и этилбензола (СеН СоН ) Температура кипения о-ксилола 144,4 °С, л-ксилола 139,1 °С и л-ксилола 138,4 °С Содержание ксилолов в сыром бензоле составляет 4—7 % [c.292]

    Ксилольная фракция состоит из трех изомеров ксилола, этил-бензол а, стирола, небольших количеств диметилтиофенов и неидентифицированных ненасыщенных и насыщенных неароматических углеводородов. Содержание ароматических углеводородов изменяется от 65 до 75%, а общее содержание ненасыщенных, включая стирол (0,8—1,0% на сырой бензол), колеблется в пределах от 20 до 25% (на ксилольную фракцию). [c.523]

    Как видно из приведенных выше данных, производство ароматических и жирноароматических углеводородов из нефтяного сырья в последнее время базируется в основном на процессах каталитического риформинга. Соотношение выпускаемых углеводородов зависит от состава исходного нефтяного сырья. Выход толуола, как правило, значительно превышает выход бензола и ксилолов. Мощность установок по производству о- и и-кси-лолов из технического ксилола каталитического риформинга в начале 60-х годов составляла 10-15 тыс. т в год [1]. Быстрый рост промышленности пластических масс и синтетических волокон привел к необходимости развития крупнотоннажных производств изомеров ксилола, и процессы каталитического риформинга не стали обеспечивать полностью спрос на эти продукты ввиду низкого содержания о- и п-ксилолов в продуктах риформинга. Поэтому внимание исследователей было направлено на разработку процессов изомеризации технического ксилола риформинга, в результате которых выход целевых продуктов-о- и п-ксилолов-достигает 90%. Современные методы получения ароматических углеводородов g позволяют создавать мощные комплексы по производству этих изомеров ксилола. Так, производство -ксилола в США в 1980 г. составило 1730 тыс.т в год при его потребности 1350 тыс.т в год только для получения терефталевой кислоты и ее диметилового эфира (используемых для производства полиэфирных волокон) [9]. [c.9]

    На выход ароматических продуктов пиролиза строение исходного углеводорода влияет следующим образом больше всего бензола образуется из нафтенового сырья. Алканы изостроения дают более высокие выходы ароматических углеводородов, чем н-алканы, и эта зависимость заметнее при большем разветвлении исходного сырья. Это объясняется повышенной концентр ащ1ей в составе продуктов разложения изомеров аллильного и диенильного радикалов, при взаимодействии которых образуются бензол, толуол и ксилолы. Занисимости состава продуктов пиролиза от строения углеводородов закономерны для широкого диапазона параметров процесса пиролиза. При неизменной качественной картине наблюдается различие в количественных соотношениях продуктов пиролиза. Выход ароматических соединений зависит также от содержания ароматических углеводородов в исходном сырье, которые в процессе пиролиза в значительной части ( 70—80%) либо сохраняются, либо деалкилируются с образованием преимущественно бензола. Показано [141], что с увеличением содержания ароматических углеводородов в сырье от О до 12% в пи-рогазе несколько уменьшается концентрация этана, пропилена,, бутена и бутадиена-1,3, незначительно повышается содержание этилена, метана и более заметно — водорода при этом имеет место пропорциональное уменьшение газообразования. Зависимость выхода алкенов и газообразования от добавки ароматических углеводородов к бензину носит линейный характер. Это дает основание предположить, что ароматические соединения в основном не принимают участия в реакциях разложения, приводящих к получению газообразных углеводородов [141]. [c.48]


Справочник коксохимика Т 6 (1966) -- [ c.191 , c.192 ]




ПОИСК





Смотрите так же термины и статьи:

Бензол сырой

Сыров

Сырь



© 2025 chem21.info Реклама на сайте