Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Промышленные методы получения ароматических углеводородов

    В настоящее время промышленное значение пиролиза постепенно уменьшается получение ароматических углеводородов стремятся вести более эффективными методами. Так, путем дегидрогенизации содержащиеся в нефтях циклопарафины с шестичленным кольцом могут быть превращены в ароматические углеводороды, например  [c.363]

    НОВЕЙШИЕ ПРОМЫШЛЕННЫЕ МЕТОДЫ ПОЛУЧЕНИЯ АРОМАТИЧЕСКИХ УГЛЕВОДОРОДОВ [c.253]


    В- крупных масштабах в промышленности организовано производство всех изомеров ксилола. В значительно меньших объемах производятся псевдокумол, дурол, мезитилен и цимолы. Основным источником получения ароматических углеводородов Са— Сю являются процессы переработки нефти. Химические продукты коксования угля практически нигде не используются для выделения отдельных изомеров ксилола и лишь в очень незначительном масштабе применяются для получения углеводородов Сд. Для отдельных компонентов разрабатываются и применяются различные методы синтеза. [c.247]

    Инженер А. Никифоров,приложивший немало энергии на то, чтобы усовершенствовать промышленный метод получения ароматических углеводородов пиролизом нефти, предложил работать при небольшом давлении, порядка 2 ат. Работая по этому методу, Н. Д. Зелинский получал в 1902 г. 3.9% толуола, считая на исходную нефть, причем это составляло 28% фракции 75—180°. Позднее им же было показано, что некоторые окислы металлов, особенно окислы цинка, титана и алюминия, при 550—600° благоприятствуют реакции ароматизации и что в присутствии этих контактов толуол в [c.12]

    Применив сначала метод дегидрогенизации над платиновым и палладиевым катализаторами, а также над никелем, осажденным на окиси алюминия , для исследования нефтяных фракци , в дальнейшем И. Д. Зелинский в работах с Ю. К. Юрьевым, и особенно с Н. И. Шуйкиным, показал, что в некоторых нефтяных фракциях содержание ароматических углеводородов, в частности, толуола, может быть в результате дегидроге-низационного катализа увеличено с 1—2 до 50%. Таким образом, каталитическая дегидрогенизация может служить промышленным методом получения толуола из нефтей, содержащих метилциклогексан. Уже в 1923 г. А. В. Виноградов указывал на каталитическую дегидрогенизацию некоторых узких бензиновых фракций как на единственный рациональный метод получения бензола и толуола из нефти. [c.20]

    Пиролиз — наиболее жесткая форма термического крекинга углеводородов, осуществляемого в зависимости от сырья при температурах от 670 до 1200 °С с целью получения газообразных непредельных углеводородов. В качестве побочных продуктов образуются ароматические углеводороды бензол, толуол, ксилол, нафталин, антрацен и др. До разработки промышленного процесса каталитического риформинга пиролиз был единственным методом получения ароматических углеводородов из нефти.. Исходным сырьем процесса являются этан, пропан, бутан, их смеси, природные и попутные газы, низкооктановые бензины, газоконденсаты, керосино-газойлевые фракции, нефтяные остатки и даже сырая нефть [5]. Использование нефтяных остатков как сырья пиролиза ограничивается большими отложениями кокса, свойственными глубокому превращению смолистых веществ-нефти. [c.30]


    Синтез масел методом алкнлирования. Реакция алкилирования имеет самое широкое распространение в нефтяной промышленности при получении компонентов моторных топлив. Методом алкилирования ароматических углеводородов и фенолов получают многие виды присадок к маслам. [c.400]

    Пиролиз — наиболее жесткая форма термического крекинга нефтяного и газового сырья, осуществляемая обычно при 700—900 С с (целью получения углеводородного газа с высоким содержанием не-предедьных. Режим может быть направлен на получение максимального выхода этилена, пропилена или бутиленов и бутадиена. Наряду с газом образуется некоторое количество жидкого продукта — смолы, содержащей значительные количества моноциклических (бензол, толуол, ксилолы) я полициклических ароматических углеводородов (нафталин, антрацен). Долгое время, пока не был разработан процесс каталитического риформинга, пиролиз являлся практически единственным промышленным методом получения ароматических углеводородов из нефти. [c.106]

    Сернокислотный метод, являющийся основным способом очистки продуктов пиролиза от непредельных и сернистых соединений и широко применяемый в нашей промышленности, имеет существенные недостатки значительные потери сырья, большой расход кислоты, получение ароматических углеводородов недостаточно высокого качества [4, 5]. При этом часть продуктов пиролиза (тяжелая смола пиролиза, содержащая значительные количества бензола, толуола, нафталина и др.) сжигается. [c.129]

    Возможности метода высокотемпературной гидрогенизации, как способа получения ароматических углеводородов для промышленности органического синтеза, далеко не исчерпываются охарактеризованными процессами. [c.194]

    Процесс ультраформинг применяется как для получения высокооктанового компонента бензина, так и индивидуальных ароматических углеводородов из низкооктановых бензиновых фракци й прямой перегонки нефти, коксования, каталитического и термического крекинга, гидрокрекинга. Как правило, на промышленных установках ультра-форминга вырабатывают риформинг-бензины с октановым числом 95—103, дополнительным фракционированием можно выделить фракцию с октановым числом 109—113 (по исследовательскому методу, без ТЭС). [c.30]

    Реакция изомеризации — диспропорционирования отличается рядом практически весьма важных особенностей, с которыми необходимо предварительно ознакомиться для рассмотрения возможности промышленного осуществления процесса. Весьма важно отметить, что в реакциях этого типа в качестве сырья вероятнее всего будут использованы псевдокумол и ж-ксилол. Действительно, при производстве п- и о-ксилола и этилбензола высокой чистоты в виде остатка ароматической риформинг-фракции Сз будет получаться фракция, содержащая около 75% ж-ксилола. Эта фракция может использоваться как сырье для получения других изомерных ксилолов реакцией изомеризации или для получения ароматических углеводородов диспропорционированием. Аналогично псевдокумол высокой чистоты можно получать из фракции С,, риформинг-бензина путем выделения головных и хвостовых компонентов. Изомеризацией этой фракции можно получать смесь трех изомерных триметилбензолов, из которой мезитилен можно выделить перегонкой. Можно также осуществить диспропорционирование псевдокумола для получения фракции Сю, из которой кристаллизацией можно выделить дурол. Выше уже указывалось, что при помощи известных в настоящее время методов мезитилен нельзя выделить из ароматической фракции Сд риформинг-бензина. Хотя, как указывалось в патентной литературе [70—72], дурол можно выделить из риформинг-бензинов С кристаллизацией, суммарные ресурсы дурола, которые удастся получить из этого источника, недостаточны для крупнопромышленного применения. Помимо увеличения потенциальных ресурсов дурола при помощи процесса диспропорционирования, получаемая таким процессом фракция Сц, будет содержать значительно больше дурола, чем фракция Сщ риформинг-бензина, что дает заметные преимущества на последующих ступенях очистки. [c.331]

    Каталитический крекинг служит в США главным источником получения пропилена. Однако в производстве других нефтехимических полупродуктов процессы каталитического крекинга и гидрокрекинга находят ограниченное применение, исключая получение исходного сырья для пиролиза. Количество олефинов, извлекаемое из нефтезаводских газов, недостаточно для удовлетворения нужд химической промышленности, вследствие чего паровой пиролиз приобрел самостоятельное значение как метод получения олефиновых углеводородов. Полагают, что в настоящее время общий годовой объем мирового потребления этилена (без социалистических стран) составляет 22 млн. т, а пропилена — 11 млн. т , Пиролизом жидкого углеводородного сырья получают также значительные количества других полупродуктов, таких, как бутадиен, бутилены, изопрен и ароматические углеводороды. Современные установки пиролиза нафты имеют годовую мощность 250—500 тыс. т этилена и потребляют свыше 1 млн. т сырья в год. [c.50]


    Если учесть, что масштабы коксования каменного угля определяются потребностями металлургической промышленности в коксе, а химическая промышленность развивается более высокими темпами, чем коксохимия, то становится очевидной все большая необходимость привлечения процессов нефтепереработки для получения ароматических углеводородов. Кроме того, современные комплексные методы переработки нефти, включающие коксование нефтяных остатков, получение смазочных масел, каталитический крекинг и риформинг прямогонных фракций с получением высокооктановых моторных топлив, а также квалифицированное использование получаемых углеводородных газов, дают более дешевые ароматические углеводороды, чем при коксовании каменного угля. [c.99]

    От прямой разгонки нефти следует отличать ее крекинг, т. е. процессы термического, каталитического расщепления углеводородов, направленные в общем на расщепление углеводородов с образованием соединений с меньшим молекулярным весом. Таким путем из высоких фракций нефти получают дополнительные количества наиболее ценных низкокипящих фракций, главным образом моторные бензины. Этот метод служит также основным источником получения углеводородных газов — сырья для многих современных химических синтезов. К числу современных процессов переработки нефтепродуктов относятся и каталитическое алкилирование, восстановительный крекинг, гидрогенизация, окислительный крекинг и т. д. Продукты, получаемые при крекинге нефти, резко отличаются по составу от соответствующих фракций прямой гонки, так как при термическом и каталитическом разложении нефти образуется много ароматических и непредельных углеводородов. Пирогенетическое разложение нефти служит даже источником промышленного получения ароматических углеводородов. [c.50]

    Другим источником получения ароматических углеводородов, начиная с сороковых годов, стала нефть. Природная нефть и почти все продукты ее прямой перегонки содержат очень мало ароматических углеводородов. Однако широко используемые в нефтяной промышленности процессы ее переработки для получения высококачественных бензинов приводят к превращению парафинов в циклопарафины и их ароматизации, в результате чего в больших количествах получаются дефицитные бензол, толуол, о-, м- и п-кси-лолы. Чаще всего для этого применяется процесс каталитического риформинга, состоящий в том, что бензин прямой перегонки в смеси с водородом пропускается при 500° С и давлении 15—40 ат над катализатором. Последний обычно представляет собой окись алюминия, содержащую 10% молибденовой кислоты, или же окись алюминия с небольшим количеством платины. При осуществлении такого процесса ароматизация никогда не проходит нацело, и ароматические углеводороды необходимо отделять от парафинов и циклопарафинов. Это достигается экстракцией катализата селективными растворителями. После этого для выделения индивидуальных ароматических соединений используют фракционную перегонку, азеотропную перегонку, вымораживание и другие методы. [c.7]

    В последние годы осуществлены промышленные процессы получения ароматических нитрилов окислительным аммонолизом ароматических углеводородов (толуола, ксилолов и др.). Раньше ароматические нитрилы получали через большое число промежуточных стадий. Бензонитрил, например, получали из бензола через нитробензол и анилин взаимодействием щелочных солей бензол-сульфокислот с цианидами щелочных металлов или дегидрированием аммониевых солей ароматических кислот пли амидов. Стоимость ароматических нитрилов, получаемых этими методами, высокая, что ограничивало их применение в производстве пластических масс, синтетических волокон, красителей. [c.315]

    Таким путём Николай Дмитриевич и его ученики установили содержание циклогексана, метилциклогексана, диметилциклогексанов и других шестичленных нафтенов в нефтях всех основных месторождений СССР. В этих работах были выявлены возможные источники природного сырья для получения ароматических углеводородов (столь нужных для различных отраслей химической промышленности) путём каталитической дегидрогенизации (ароматизации) шестичленных нафтенов по методу Н. Д. Зелинского. [c.89]

    Каталитический риформинг — широко применяемый процесс получения высокооктановых бензинов из низкооктановых бензиновых фракций. Риформинг бензина или его фракций в сочетании с различными методами выделения ароматических углеводородов, например экстракцией растворителями, позволяет получать ароматические углеводороды (бензол, толуол, ксилолы и высшие), используемые в нефтехимической и химической промышленности  [c.136]

    Для производства синтетических материалов необходимы ароматические углеводороды — бензол, толуол, ксилол, нафталин и др. Пока не был разработан процесс каталитического риформинга, единственным промышленным методом получения ароматических углеводородов из нефти был пиролиз, при котором наряду с газом образуется жидкий продукт, содержащий как моноциклические (бензол и др.), так и полициклические ароматические углеводороды (нафталин, антрацен и др.). При каталитическом риформинге происходит дегидрогенизация шестичленных нафтенов, и образуются ароматические углеводороды. Происходят и другие реакции — дигидрогенизация парафинов, циклизация и др. [c.325]

    Получение дурола методом метилирования. Реакцией метилирования можно ввести в ароматич еское ядро метильную группу и тем самым синтезировать различные полиметилбензолы. Для введения метильной группы можно использовать метанол, диметиловый эфир, метилгалогениды и другие реагенты. Экономически наиболее выгодным метилирующим агентом обычно является метанол. Одним из первых промышленных процессов метилирования ароматических углеводородов было получение толуола из бензола в Германии во время второй мировой войны [43]. Реакцию осуществляли в присутствии фосфорноцинкового катализатора при 340—380 °С, 3,5 МПа (35 кгс/см2) и мольном отношении бензол метанол 0,25 1. Выход толуола в расчете на бензол составлял 12—17 вес. % одновременно получалось 4—6 вес. % ксилолов и 3—6 вес. % высших ароматических углеводородов. При возврате в реакцию непревращенного бензола выход толуола в расчете на бензол достигал 69 вес. %, расход метанола 0,85 т/т толуола. Недостаток толуола в условиях военного времени послужил причиной применения этого процесса в Германии. [c.227]

    Наряду с благородными металлами и никелем для дегидрогенизации метилциклогексана Н. А. Бутков, Е. Рабинович и Н. Чепуров предложили также в качестве катализатора дву сернистый молибден. В этом случае необходимо работать при более высокой температуре, около 500°, и под давлением 180—200 ат. В этих условиях, по мнению авторов, толуол, выход которого составляет 35—40%, образуется не только за счет метилциклогексана, но и за счет других углеводородов с более низкой и более высокой температурой кипения. Как мы увидим, этот метод, предложенный Н. А. Бутко-вым. Е. Рабинович и Н. Чепуровым, в дальнейшем был использован авторами новейших промышленных методов получения ароматических углеводородов — американского гидроформинг-процесса и германского процесса ОНО (см. ниже). [c.20]

    НИТРОМЕТАН СНзЫОз — бесцветная жидкость со своеобразным запахом горького миндаля, т. кип. 101,18°С, малорастворим в воде, хорошо растворяется в большинстве органических растворителей. Н.— простейший представитель класса нитропарафинов. Промышленные методы получения Н. основаны на деструктивном нитровании па-рафи1ювых углеводородов (чаще всего используется пропан). Н. применяют как растворитель, для экстракции ароматических углеводородов из смесей с алифатическими и алициклическими как полупродукт для синтеза хлорпикрина, нитроспиртов, взрывчатых веществ, как добавка к дизельному топливу и как горючее для реактивных двигателей. Н, [c.176]

    Если в научной литературе нет достаточных данных об американских промышленных методах получения ароматических углеводородов, то о методах получения ароматики, принятых в Германии, данные совершенно отсутствуют. Некоторые подроб- [c.260]

    Самым значительным результатом работ Н. Д. Зелинского в области кинетики и механизма дегидрогенизационного катализа являются выводы, которые послужили А. А. Баландину (см. Развитие физической химии в СССР ) основанием к созданию мультиплетной теории катализа. Дегидрогенизационный катализ Зелинского давно превратился в основной метод изучения природы нефтяных углеводородов, так как только с его помощью стало возможным производить разделение алициклических углеводородов нефти и затем определение индивидуального состава циклогексановой части. Большинство исследований различных фракций нефтей Советского Союза было осуществлено Н. Д. Зелинским, И. И. Шуйкиным, Ю. К. Юрьевым, Б. А. Казанским, А. Ф. Платэ, И. А. Мусаевым, А. М. Рубинштейном, Г. Д. Гальперном и другими химиками с применением этого метода [19]. Дегидрогенизационный катализ стал промышленным методом получения ароматических углеводородов на основе соответствующих циклогексановых углеводородов нефти [34]. В тех случаях, когда преследуется цель увеличения ароматических углеводородов в бензинах для повышения их октанового числа, дегидрогенизационный катализ осуществляется применительно к широким фракциям нефти. Чаще всего ои сочетается со специальными процессами изомеризации углеводородов — риформингом. Так, например, платформинг, применяемый для повышения октанового числа карбюраторных топлив, представляет собой сочетание дегид-рогенизациопного и изомеризационного катализа, осуществляемого с помощью смешанных катализаторов, содержащих платину или другие элементы, заменяющие ее и являющиеся равноценными по дегидрирующему действию. [c.24]

    Дегидрогенизационный катализ стал промышленным методом получения ароматических углеводородов на основе соответствующих циклогексановых углеводородов нефти. Практически это осуществляется на заводах нефтепереработки, где дегидрогенизации (и частично Сд-деги-дроциклизации) подвергается узкая фракция нефти, соответствующая точке кипения циклана [см. 11]. В тех же случаях, когда преследуется цель увеличения ароматики в бензинах для повышения их октанового числа, дегидрогенизационный катализ производится применительно к широким фракциям нефти. Чаще всего он сочетается со специальными процессами изомеризации углеводородов — риформингом. Так, например, платформинг, при-лшняемый для повышения октанового числа карбюраторных топлив, представляет собою сочетание дегидрогени-зационного и изомеризационного катализа, осуществляемого с помощью смешанных катализаторов, содержащих платину или другие элементы, заменяющие ее дегидрирующее действие. [c.166]

    Реакция ароматизации идет лучше при увеличении числа атомов углерода в молекуле (от 6 до 9) и увеличении ненасыщенности молекулы исходного углеводорода. Разветвление цепи при возможности образования ароматического цикла благоприятствует реакции. В последние годы реакция ароматизации парафиновых углеводородов приобрела значение не только как метод получения ароматических углеводородов, но и как один из важных методов улучшения качества легких моторных топлив. В этом случае ароматизация пара финовых углеводородов сопровождается одновременно протекающей реакцией дегидрогенизации гидроароматических углеводородов (шестичленных нафте-нов), и в промышленной практике этот процесс известен под тривиальным названием гидроформинга . Необходимо отметить отсутствие описания этих процессов в предлагаемой монографии Беркман, Моррелл, Эглофф. Реакции каталитической циклизации, приводящие к образованию полициклических конденсированных систем, должны быть также отмечены. Н. Д. Зелинский, И. Н. Тиц, Я. И. Денисенко, С. И. Хромов показали, что при 300° на платинированном угле дифенилметан превращается во флуорен, а дифениламин в карбозол в тех же условиях дифенилэтан и стильбен дают фенатрен. Аналогично веду-" себя фенилциклопентилэтан и а-нафтилциклопентилэтан. [c.18]

    Позднейшрю работы внесли в метод каталитической дегидрогенизации существенные дополнения. Как оказалось, ароматизации под влиянием, некоторых катализаторов могут подвергаться не только шестичленные нафтены, но и парафины. Эта последняя реакция получила наименование, дегидроциклизации и в настоящее время, когда методы каталитической дегидрогенизации и дегидроциклизации получили широкую апробацию не только в лабораторном, ио и в промышленном масштабе, не может быть никакого сомнения, что эти методы получения ароматических углеводородов на нефтяной базе являются одними из наиболее совершенных методов глубокой химической переработки нефти. [c.755]

    Основными поставщиками ароматических соединений являются коксохимическая и нефтехимическая промышленности. Развитие каталитических методов получения ароматических углеводородов из нефтяных фракций значительно увеличило роль нефтяной промышленности в производстве бензола, толуола и кселолов. Выделение ароматических соединений из дистиллятов, получаемых при каталитической ароматизации, сопряжено с некоторыми трудностями. Последние обусловливаются в основном наличием близко-кипящих неароматических соединений, образующих смеси малой относительной летучести и азеотропные смеси. Эти обстоятельства затрудняют применение ректификации для выделения ароматических углеводородов высокой степени чистоты. Одним из эффективных способов извлечения ароматических соединений является жидкостная экстракция. В качестве растворителей при выделении ароматических углеводородов используются диэтиленгликоль и жидкий сернистый ангидрид. [c.185]

    Как видно из приведенных выше данных, производство ароматических и жирноароматических углеводородов из нефтяного сырья в последнее время базируется в основном на процессах каталитического риформинга. Соотношение выпускаемых углеводородов зависит от состава исходного нефтяного сырья. Выход толуола, как правило, значительно превышает выход бензола и ксилолов. Мощность установок по производству о- и и-кси-лолов из технического ксилола каталитического риформинга в начале 60-х годов составляла 10-15 тыс. т в год [1]. Быстрый рост промышленности пластических масс и синтетических волокон привел к необходимости развития крупнотоннажных производств изомеров ксилола, и процессы каталитического риформинга не стали обеспечивать полностью спрос на эти продукты ввиду низкого содержания о- и п-ксилолов в продуктах риформинга. Поэтому внимание исследователей было направлено на разработку процессов изомеризации технического ксилола риформинга, в результате которых выход целевых продуктов-о- и п-ксилолов-достигает 90%. Современные методы получения ароматических углеводородов g позволяют создавать мощные комплексы по производству этих изомеров ксилола. Так, производство -ксилола в США в 1980 г. составило 1730 тыс.т в год при его потребности 1350 тыс.т в год только для получения терефталевой кислоты и ее диметилового эфира (используемых для производства полиэфирных волокон) [9]. [c.9]

    Неоценимый вклад в химию углеводородов внес своими блестящими исследованиями Н. Д. Зелинский с сотрудниками. Результаты исследований в области каталитической дегидрогенизации нафтеновых углеводородов легли в основу одного из промышленных методов получения толуола из нефтяного сырья. Не меньшее значение имеет открытая сотрудниками Зелинского реакция циклизации парафиновых углеводородов, которая может быть использована в качестве нового метода получения ароматических углеводородов из нефтяного сырья. В результате работ Н. Д. Зелинского, Б. А. Казанского и их многочисленных сотрудников была доказана взаимо-превращаемость углеводородов различных рядов при каталитических реакциях, Особо следует отметить исследования Н. Д. Зелинского по разработке синтеза углеводородов на базе окиси углерода и водорода хотя реакция между окисью углерода и водородом была осуществлена в промышленном масштабе впервые в Германии Фишером и Тропшем, следует отметить, что она была открыта русским химиком Е. И. Орловым в 1908 г. Таким образом, в области создания новых процессов получения углеводородов—основного сырья для промышленности органического синтеза—работы отечественных исследователей занимают одно из первых мест. [c.4]

    Возросшую в столь сильной степени потребность в промышленном получении ароматических углеводородов уже было невозможно удовлетворить за счет каменноугольной смолы, и пришлось искать новые источники ароматики. Наиболее мощным источником оказалась нефть, для получения из которой ароматических углеводородов были открыты и усовершенствованы новые методы. Одним из них является метод непосредственной каталитической циклизации и ароматизации содержащихся в нефти парафиновых углеводородов. [c.8]

    Совершенствование методов переработки нефти и последующего выделения ароматических углеводородов привело к тому, что основное количество ароматических углеводородов производится из нефти. Так, в США в 1980 году 99% ксршола, 97% толуола и 91% беизола получали из продуктов переработки нефти. Инт эесно проследить обшую тенденцию изменения исиользования угля и нефти как сырьевой базы для получения ароматических углеводородов. Еще в 1956 году коксохимическая промьшшеиность США давала 62% общего количества бензола, но в 1965 году ее доля снизилась до 15%, а в 1980 году - до 9%, тогда как доля нефтеперерабатывающей промышленности в производстве беизола за тот же нериод возросла с 38 до 91%. [c.2274]

    В 1961 г. на Сланцеперерабатывающем комбинате имени В. И. Ленина в г. Кохтла-Ярве выстроен и освоен цех переработки сланцевого камерного газового бензина методом. пиролиза с целью получения ароматических углеводородов. В мировой практике такой процесс переработки сланцевого газового бензина в промышленном масштабе осуществлен впервые. [c.70]

    Согласно некоторым опубликованным в печати данным, в Англии начиная с 1941 г. работала промышленная установка, а с 1940 г. около Манчестера началось строительство завода производительностью до 100 ООО т в год по получению ароматических углеводородов методом пиролиза нефтяных продуктов или сланцевых смол. Работа велась согласно так называемому Катарол-процессу, основанному на ряде патентов Вейцмана. О процессе известно лишь, что работа ведется при температуре 630—680°, при объемной скорости 0.05—0.5, причем получаемый продукт (с выходом около 50%) может содержать до 95% ароматики. Кроме того, получаются ценные газообразные продукты. Относительно применяемого катализатора ничего не говорится. Упоминается лишь, что медь, будто бы, уменьшает коксообразование и позволяет снизить темпера-туру реакции образования ароматических углеводородов. [c.16]

    Окисление ароматических углеводородов кислородом воздуха на контакте УаОв.УгОб служит гетерогенным катализатором окисления ароматических углеводородов кислородом воздуха. Такое окисление бензена и нафталена используется в качестве промышленного метода получения малеинового и фталевого ангидридов  [c.417]

    Получение ароматики из нефти было значительно расширено путем внедрения в промышленность пиролиза нефтяных дестиллатов в ретортах Пинча и Пиккеринга (ч. И, гл. III, стр. 411). Этим способом, и поныне ведется получение в промышленном масштабе простейших ароматических углеводородов. Однако большие потери, связанные с необходимостью глубокой очистки соответствующих дестиллатов для удаления из них непредельных, большой расход серной кислоты, идущей на) эту очистку, и весьма скромные выходы на целевые продукты, в основном, на бензол и толуол, все это, вместе взятое, отнюдь не позволяло считать решенной проблему получения ароматических углеводородов на нефтяной базе и заставляло искать новых, более совершенных методов для решения этой задачи. [c.755]

    В США для получения ароматических углеводородов высокой чистоты из смол пиролиза разработан и осуществлен в промышленности двухступенчатый гидрогенизационный процесс юнифайнинг [3]. Он предусматривает отбор из сырья фракции Сд, из которой выделяется изопрен и циклопентадиен, гидроочистку фракции С —Сд, использование углеводородов фракции Сд для получения индена, стирола и их производных, направляемых на производство искусственных смол, и выделение ароматических углеводородов Се—Сз по методу юдекс . Расход водорода составляет 18—96 м /м сырья в зависимости от количества непредельных углеводородов, а также соединений, содержащих серу, кислород и азот. Проведенные техникоэкономические расчеты свидетельствуют о перспективности указанного метода переработки смол пиролиза. Однако в опубликованных данных не приводятся условия гидрирования (давление, температура, объемная скорость и др.). [c.163]

    Риформинг. В процессе каталитического риформинга бензинов протекают, главным образом, реакции дегидрирования нафтеновых и парафиновых углеводородов, реакции изомеризации и гидрокрекинга парафиновых углеводородов. Ароматизованный продукт служит базовым компонентом автобензинов или является сырьем для получения индивидуальных углеводородов, используемых в нефтехимической промышленности. В США ароматические углеводороды получают в процессе каталитического риформинга бензинов. Выход их достигает 80% на сырье из них около 13% углеводородов. Се — Сд выделяется для химического синтеза [751. Сырьем в процессе риформинга служат низкооктановые бензины (50—60 по моторному методу) — легкие нефтяные дистилляты или тяжелые фракции термического крекинга, содержащие в основном парафиновые и нафтеновые углеводороды. Во избежание отравления промышленного платинового кЁтализатора на основе AI2O3 сырье проходит предварительное гидрооблагораживание, заключающееся в обессе-ривании, удалении азотистых соединений, смолистых и непредельных углеводородов, а также металлоорганических соединений. [c.137]

    Современный нефтехимический синтез базируется на низших ненасьпценных ациклических и ароматических углеводородах. Самым простым промышленным методом получения этих соединений является пиролиз газообразных парафинов при температурах 800-870°С и длительности контактирования до 1 с. В последнее время все чаще пиролизу подвергают также самые легкие нефтяные фракции. Основные тенденции в этом направлении-укрупнение установок до производственных мощностей от 500 до 700 тыс. т в год, повьппение селективности процессов и расширение сырьевой базы пиролиза, т. е. осуществление пиролиза тяжелых дистяллятов и даже самой нефти. [c.36]

    Для получения малосернистых бензиновых фракций, низкоза-стывающих керосиновых и газойлевых фракций и для снижения содержания в вакуумном газойле азота и тяжелых металлов особое внимание следует уделять четкости погоноразделения при перегонке нефти. При коксовании гудрона образуется большое количество многосернистого, богатого тяжелыми металлами кокса, непригодного для металлургической промышленности. В дистиллятах крекинга и коксования содержится много серы и азота, поэтому эти дистилляты надо подвергать глубокому гидрированию. При получении из сернистых нефтей ароматических углеводородов — сырья для нефтехимической промышленности — нужны специальные методы. Перед каталитическим крекингом дистиллятов вакуумной перегонки высокосернистых нефтей, содержащих азот, серу и тяжелые металлы, необходима специальная их обработка, чтобы избежать отравления катализаторов и предотвратить ухудшение качества продуктов крекинга. [c.119]

    Сульфирование проводится обычным методом коптактировапия ух ле-водорода с сульфирующим агентом при хорошем перемешивании. В газойле крекинга, полученном из нефти с сравнительно высоким содержанием ароматических углеводородов, все содержащиеся в нем ароматические углеводороды полностью сульфируются 98%-ной кислотой при 266°. При этом образуются главным образом растворимые в воде сульфокислоты, по свойствам напоминающие зеленые кислоты [40]. В качестве сульфирующего агента для фракций смазочных масел обычио используется 20%-ный олеум, хотя отчасти применяется и серный ангидрид, особенно с 1947 г., когда он начал вырабатываться в промышленных масштабах в виде стабилизировапной жидкости. [c.536]

    КИНГ и требует высоких расходо в топлива. Продукция этого крэкинга отличается значительным содержанием в газах дивинила и в бензиновой фракции — ароматических углеводородов. Газофазный крэкинг начинает приобретать промьшшенное значение главным образом как метод получения дивинила, являющегося исходным сьфьем для синтеза каучука. У нас этот крэкинг, осуществленный на опытном заводе на основе работ В. В. БызоЬа, дает до 10% дивинила от веса исходной нефти (главным образом пиролизу подвергается керосиновая фракция). Однако, по данным американской печати, при пиролизе нефти под вакуумом повидимому могут быть получены и значительно лучшие выходы дивинила (10 кг из 39 кг нефти). Далее, наряду с Ьысоким выходом ароматических углеврдородов, в частности такого ценного продукта как толуол, этот метод дает возмояшость извлекать заметные количества стирола, являющегося высокоценным сырьем для получения изоляционных масс. Все это дает право надеяться на то, что при рационализации использования всей продукции этого крэкинга он займет видное место в общей системе крэкинг-промышленности. [c.272]


Смотреть страницы где упоминается термин Промышленные методы получения ароматических углеводородов: [c.118]    [c.156]    [c.156]    [c.156]    [c.9]   
Смотреть главы в:

Химия углеводородов нефти и их производных том 1,2 -> Промышленные методы получения ароматических углеводородов




ПОИСК





Смотрите так же термины и статьи:

Углеводороды, получение ароматические Ароматические



© 2025 chem21.info Реклама на сайте