Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ароматические углеводороды основные свойства

    Таким образом, органические соединения серы наряду с наф-тено-парафиновыми и нафтено-ароматическими углеводородами являются одним из основных компонентов в базовых, маслах, получаемых из сернистых нефтей, и влияние этих соединений нельзя не учитывать при оценке эксплуатационных свойств масел и их поведения в двигателях и механизмах. В маслах содержится примерно равное количество сульфидов и компонентов так называемой остаточной серы, куда в основном входят гомологи тиофена, тиофана и гетерополициклические соединения, содержащие серу [83, 84]. Сера входит и в состав смолистых продуктов, присутствующих в масляных дистиллятах и товарных маслах. В маслах имеется небольшое количество дисульфидов и меркаптанов [85]. Содержание ме ркаптанов в глубокоочищен-ных маслах, получаемых из сернистых нефтей, составляет (l,6- 4-3,2)10-3% (масс.). В исходных сернистых дистиллятах содержится (4,5- 5) 10-3% (масс.) меркаптанов. В маслах, полученных из малосернистых нефтей, меркаптаны не обнаружены. [c.67]


    Неослабевающий интерес исследователей к изучению структуры и состава комплексов ароматических соединений с катализаторами Фриделя — Крафтса объясняется тем, что выяснение этого вопроса в значительной степени облегчает познание закономерностей электрофильного замещения. Еще в ранних работах на основании изменения в ультрафиолетовых спектрах поглощения было установлено, что ароматические углеводороды при взаимодействии с СЬ, Вгг и Ь образуют комплексы, проявляя при этом основные свойства. Кроме того, было показано, что при растворении НС1 в ароматических углеводородах получаются комплексы состава 1 1, не вызывающие заметных изменений в спектрах поглощения, а в экспериментах с D I обмена с водородными атомами ароматических ядер не происходило. Ароматические углеводороды при взаимодействии с сильными кислотами Льюиса проявляют себя как основания, образуя двойные (ArR—МХ ) и тройные (ArR— MX —НХ) комплексы. [c.79]

    В последнее время все большее значение для авиационных топлив приобретает объемная теплота сгорания. Существенно увеличить объемную теплоту сгорания можно, только включив в состав, топлива значительное количество специально подобранных ароматических углеводородов, при этом не должны ухудшаться основные эксплуатационные свойства топлива. [c.15]

    Предположение о двух отчетливо различающихся классах комплексов наилучшим образом может объяснить четыре вида явных аномалий, с которыми приходится сталкиваться при сравнении основных свойств ароматических углеводородов путем определения стабильности комплексов с хлористым водородом и комплексов с системой фтористый водород— трехфтористый бор, а также по скорости галоидирования [43]. [c.404]

    Топливо № 1 — как видно из свойств (табл. 1Х-3), в основном представляет керосиновую фракцию, № 2 — стоит ближе к газойлю (в узком смысле слова). Топливо № 1 просто в обращении, и применении, № 2 — вносит некоторые трудности, обусловленные присутствием продуктов крекинга. Так как крекинг дает олефиновые и ароматические углеводороды, топлива, содержащие значительные количества таких продуктов, имеют тенденцию к образованию дыма и коксовых отложений, несмотря на достаточную подачу воздуха и хорошую регулировку горелки [92]. [c.479]

    Следует иметь в виду, что, как показано далее, изучение каталитического гидрирования циклоалкенов и трактовка полученных результатов строились в основном на представлениях классической стереохимии, а конформационный подход использовался сравнительно мало. При гидрировании ароматических углеводородов конформационные свойства исходных и конечных молекул различаются гораздо более существенно, чем при гидрировании циклоалкенов, а потому для. понимания получаемых результатов приходилось учитывать конформационные особенности циклоалканов. Вследствие этого раздел, посвященный конформационным особенностям циклоалканов, непосредственно предшествует разделу, в котором рассмотрено гидрирование ароматических углеводородов ряда бензола. [c.20]


    Для выделения сульфокислот смесь предварительно очищают серной кислотой, и образовавшиеся гудроны удаляют. Последующее сульфирование масел олеумом (20% ЗОд) позволило получить некоторые кислоты с хорошими моющими свойствами. При сульфировании образуются растворимые в масле (так называемые коричневые ) и растворимые в воде ( зеленые ) кислоты. Первые —это в основном моносульфокислоты ароматических углеводородов н нафтенов с длинными боковыми парафиновыми цепями. Они обладают капиллярноактивными свойствами (эмульгаторы, пенообразователи) их выделяют из сульфированного масла экстракцией щелочами или спиртами (этиловым, изопропиловым, бутиловым). [c.343]

    Состав и строение ароматических углеводородов в значительной мере определяют основные эксплуатационные свойства бензинов риформинга. Ароматические углеводороды распределены в бензине крайне неравномерно (см. рис. 1). Если головная фракция бензина риформинга совершенно не содержит ароматических углеводородов, то в хвостовых фракциях их более 90%. [c.19]

    Каталитическую активность в изомеризации олефинов связывают со способностью катализатора к передаче протона олефину. Основные свойства олефинов и ароматических углеводородов свя- [c.89]

    Основные эксплуатационные требования к топливу обеспечение надежного запуска и надежной работы двигателей, необходимой скорости и дальности полета, полноты сгорания топливовоздушной смеси. Наиболее существенное влияние на свойства топлива оказывают плотность, теплота сгорания, фракционный состав, вязкость, температура начала кристаллизации, содержание ароматических углеводородов, серы, активных сернистых соединений, смол. [c.433]

    Различные соотношения входяпщх в технический парафин и в церезин углеводородов разных групп обусловливают разницу химических свойств этих продуктов. Поскольку технические парафины состоят в основном из и-алканов и из углеводородов, близких к ним по структуре, их химические свойства приближаются к химическим свойствам к-алканов технические парафины являются химически малоактивными веществами, слабо реагируют со многими реагентами, энергично действующими на церезин, и способны образовывать в значительной доле своей ыассы комплексы с карбамидом. Церезины же вследствие присутствия в них ароматических углеводородов, углеводородов сильно разветвленных структур и высокомолекулярных конденсированных соединений обладают повышенной реакционной способностью, в частности, энергично реагируют с хлорсульфоновой кислотой, олеумом и др. С карбамидом лишь относительно небольшая часть массы церезина способна образовывать комплексы. --— [c.79]

    Электрофильное замещение в ароматических углеводородах сопровождается переносом электронов от аренов к атакующему электрофилу, что приводит к образованию л-комплексов. Подтверждением их существования является изменение физических и химических свойств системы углубление цвета, рост дипольного момента и т. д. л-Комплексы находятся в равновесии с несколько более прочными о-комплексами, имеющими ковалентную связь. Введение в ядро алкильных заместителей способствует образованию л- и ст-комплексов, так как повышает электронную плотность ядра, увеличивает основность ароматического углеводорода и тем самым способствует скорости его взаимодействия с атакующим электрофильным агентом. Экспериментально установлено, что реакционная способность снижается в ряду [c.8]

    Промышленный опыт показал большую гибкость процесса гидрокрекинга возможность переработки различных видов нефтяного сырья оперативного технологического регулирования свойств товарных продуктов варьирования соотношений выработки автомобильных бензинов, дизельных и реактивных топлив, что особенно важно при конъюнктурных изменениях внутри страны и за рубежом. Получаемые при гидрокрекинге основные товарные продукты отличаются высоким качеством. Это объясняется, протеканием реакций изомеризации нормальных парафиновых углеводородов, в связи с чем. понижается температура застывания топлив. В результате реакций гидрирования снижается содержание ароматических углеводородов в реактивных и специальных дизельных топливах, а также в керосинах, что не может быть достигнуто применением обычной гидроочистки. [c.341]

    Все высокомолекулярные парафины представляют собой твердые вещества. Поэтому уже давно пытались использовать для разделения и характеристики нефтяных парафинов такие их свойства, как температура плавления, растворимость, склонность к кристаллизации, а также размеры и формы кристаллов. В последние годы проведена большая и систематическая работа по изучению влияния условий кристаллизации на размеры и форму кристаллов индивидуальных высокомолекулярных углеводородов. Изучена кристаллизация более 20 углеводородов основных классов (парафиновых, циклопарафиновых и ароматических). [c.75]


    Таким образом, фракция ароматических углеводородов 159—164° содержит в основном мезителен, с чем согласуются и физические свойства фракции. [c.81]

    Состав получающихся в процессе гидродеалкилирования газов зависит в основном от свойств исходного сырья при высоком содержании ароматических углеводородов в сырье наблюдается повышенная концентрация метана в газе, что видно из следующих данных [10, 11] , [c.275]

    По данным Е. М. Брещенко, при разделении продуктов, содержащих парафиновые, нафтеновые и ароматические углеводороды, общим свойством адсорбентов обоих типов является их деароматп-зирующее действие. Однако в полярном адсорбенте деароматизирующее действие является основным, в неполярном же адсорбенте (угле) депарафинирующее действие преобладает над деароматизирующим. [c.242]

    Введение заместителей сообщает молекуле ароматического углеводорода новые свойства. Например, введение сульфогруп-пы придает молекуле кислотный характер, способность растворяться в воде и в растворах щелочей, образовывать соли со щелочами и др. Введение аминогруппы придает молекуле слабые основные свойства, способность растворяться в растворах кислот, образовывать с кислотами соли и др. [c.25]

    Легкость образования сигма-комплекса зависит от нуклефильной способности ароматического углеводорода их основные свойства увеличиваются с уменьшением замещения, т. е. в порядке бензол << ксилол < мезитилен [603, 604]. В зависимости от условий реакции и от степени алкилированности ароматики реакция [c.135]

    Гидрокрекинг полициклических ароматических углеводородов в присутствии катализаторов с сильными гидрирующими свойствами протекает через образование нафтеноароматических углеводородов. Прогидрирован-ные кольца полициклических соединений в этих условиях распадаются, проходя, по-видимому, через стадию изомеризации, с образование.м пятичленного кольца [44, 45]. Раскрытие циклопентанового кольца полициклических соединений происходит в основном по месту связи его с бензольным или цпклогексановым кольцом [44]. Конечными продуктами распада являются бензол, циклогексан и их производные [46—49]. Схема превращений полициклических ароматических углеводородов в процессе гидрокрекинга на примере нафталина показана ниже [19]. [c.46]

    Бромистый алюминий легко растворяется в ароматических углеводородах с образованием окрашенных растворов. Окраска растворов меняется от слабожелтой для бензола до лимонно-желтой для толуола, желто-оранжевой для л -ксилола и оранжевой для мезитилена [59]. В бензоле и толуоле молекулярный вес соответствует формуле димера, в м-ксилоле U еще больше в мезптилене молекулярный вес ниже величины, соответствующей димеру [126]. Поэтому представляется вероятным, что имеется тенденция возрастания диссоциации димера с увеличением основных свойств ароматического углеводорода. [c.431]

    Сопоставляя отдельные физические свойства ароматических углеводородов, Мартин (Martin) и Санкин (Sankin) [60] сделали вывод, что ароматические углеводороды, имеющие три ядра в молекуле, относятся в основном к фенантренам. [c.21]

    На рис. 5.1 и 5.2 представлены фафические показатели, характеризующие процесс переработки бензиновой фракции 62-140 С на катализаторе СГ-ЗП. Анализ полученных данных свидетельствует о сложной взаимосвязи между технологическими параметрами процесса и глубиной протекания основных реакций (дегидрирования и дегидроизомеризации нафтеновых углеводородов и гидрокрекинга нормальных парафиновых углеводородов), что, в свою очередь, определяет выход стабильного бензина и его качество. Например, выход и антидетонационные свойства стабильного катализата при осуществлении процесса при температуре 420 и 460°С с объемными скоростями подачи сырья соответственно 2 и 5 час практически одинаково, в то время как выход ароматических углеводородов при темперагуре 460 С выще на 11% мае. Таким образом, регулируя параметры процесса и тем самым изменяя глубину протекания основных реакций процесса, можно в достаточно щироких пределах изменить качество получаемого катализата, в частности, содержатше ароматических углеводородов и октановое число. [c.127]

    В книге- рассмотрены современное состояние и тенденцнн производства и потребления основных ароматических углеводородов. Описаны методы анализа и оценки их товарных свойств и обоснованы требования к качеству выпускаемых промышленностью продуктов. Дано описание технологических процессов производства бензола, ксилолов, полиметилбензо-лов, нафталина, антрацена, фенантрена и некоторых других многоядерных ароматических углеводородов, получаемых из каменноугольного и нефтяного сырья. Подробно изложена технология получения специальных сортов бензола и нафталина, используемых для процессов органического синтеза. Освещены научные основы и промышленные способы переработки важнейших ароматических углеводородов. Дана токсикологическая оценка названных соединений и рассмотрены меры по снижению их вредного воздействия на природу и человека. [c.2]

    Металлический компонент катализатора, обладающий дегидриче-скими свойствами, ускоряет реакции дегидрирования и гидрирования. Он также способствует образованию ароматических углеводородов, частичному удалению промежуточных продуктов реак ц11и, ведущих к коксообразованию. Металлы-промоторы полиметаллических катализаторов, помимо взаимодействия с основным активным компонентом катализатора (платиной), влияют на селективность процесса, взаимодействуя с носителем (окисью алюминия). [c.10]

    Кроме рассмотренных классов углеводородов в состав высококипящих керосиновых фракций входят углеводороды смешанного строения, в основном нафтен- и динафтенбензолы [123]. Поскольку ароматические углеводороды ухудшают эксплуатационные свойства реактивных топлив, их содержание [c.77]

    Основным процессом технологии производства нефтяных масел является их очистка избирательными растворителями, предназначенная для удаления из масля ных дистиллятов и деасфаль-тизатов смолистых веществ и полициклических ароматических и нафтено-ароматических углеводородов с короткими боковыми цепями, а также серосодержащих и металлорганических соединений. В этом процессе закладываются такие важнейшие эноплуа-тационные характеристики масел, ка вязкостно-температурные свойства и стабильность против окисления. Эффективно сть селективной очистки обусловлена. качеством сырья, природой и расходам растворителя, температурой процесса, кратностью обработки и конструктивными особенностями оформления блока экстракции. [c.90]

    В сороковых и начале пятидесятых годов XX века было построено большое количество установок сернокислотного алкилироваиия на крупных отечественных и зарубежных нефтеперерабатывающих заводах в связи с быстро возраставшими требованиями к топливам для карбюраторн Ьгх авиационных двигателей. Было установлено, что топлива с наилучшими антидетонационными свойствами (при работе и на бедной, и на богатой смесях) можно получить лишь ком- паундированием ароматических и сильно разветвленных изопарафи-новых углеводородов. Основным методом получения изо парафино-аых углеводородов з то время было сернокислотное алкилирование. [c.5]

    Разработан новый процесс получения базового компонента авиационных бензинов типа Б-91/115, обладающего высокими антидетонационными свойствами при относительно низком содержании ароматических углеводородов и близкого по основным 1юказателям качества товарному авиабензину. [c.140]

    НаиЗолее приемлемы выводы о свойствах жирно-ароматических и ишрно-нафтеновых углеводородов. Можно считать доказанным, что имс нно углеводороды этого типа определяют основные свойства смазочных масел. [c.283]

    Касторовое масло применяется для изготовления главным образом смазок 1-13 (жировой) и 1-ЛЗ, а также различных бензоупорных и маслостойких смазок. Оно может служить основой для получения натриевых и кальциевых мыл или добавляется в смазки в виде присадки для повышения смазывающих и других эксплуатационных свойств. Получают его из семян клещевины. Оно состоит в основном из глицеридов рицинолевой кислоты хороню растворяется в ароматических углеводородах (бензоле, толуоле) и этиловом спирте, но плохо растворяется в бензине при низких температурах. С повышением температуры его растворимость в бензине повышается. Так, при 0° С в бензине растворяется 3—4% масла, а при 20° С — уже 10—12%. Бензин хорошо растворяется в касторовом масле при 0° С до 35%, а при 20° С — до 47—50% (по Панютину и Раппопорту). В минеральных (нефтяных) маслах, богатых ароматическими углеводородами, растворяется до 25% касторового масла, а в маслах парафинового основания — не более 0,5— 1,0%. С повышением температуры и вязкости минерального масла растворимость касторового масла повышается. В хорошо очищенных авиационных маслах растворяется не более 1% касторового масла. В зависимости от способа обработки техническое касторовое масло выпускается рафинированным и нерафинированным (табл. 12. 12). [c.677]

    Сравнение физико-химических свойств крекинг- остатков, получаемых в процессе висбрекинга по печному варианту и с реакционной камерой с восходящим потоком (табл. 3), показывает, что по основным показателям эти продукты схожи. Однако в крекинг -остатке печного висбрекинга повышенное содержание легких ароматических углеводородов (на 5 %) и сопоставимое распределение средней, тяжелой ароматики и смол о()еспечивается присутствием там разбавителя - тяжелого газойля каталитического крекинга, состоящего в основном из компонентов, составляющих дисперсную среду и препятствующих коагуляции асфальтенов. Отказ от вовлечения в остаток тяжелого газойля каталитического крекинга может привести к снижению стабильности получаемого по печному варианту котельного топлива. [c.49]

    Как видно из табл.1, асфальтиты - как бензиновые, так и бутановые - содержат в основном асфальтосмолистые вещества (67-79 и 57-675 соответственно), остальное - ароматические углеводороды, обладающие высоким сродством к ним. При этом в бензиновых асфальтитах концентрируются преимущественно асфальтены (45-5 ), а в бутановых-смолы (38-4 ),так, что соотношение асфальтенов и смол в составляет примерно (1,5-2) 1, а в А - наоборот. Такое различие в групповом составе асфальтенов определяет и различие в свойствах компаундов на одинаковом разяижителе. Все компаунды, содержащие А , 16 1 [c.16]

    Основными свойствами разжижителей (табл.2), влияющими на свойства компаундированных битумов, являются вязкость и групповой состав, в частности соотношение ароматических и парафино-нафтеновых углеводородов, которые определяют растворяю1цую способность среды. [c.19]

    Систематические исследования по выяснению влияния хими ческой природы нефтяного сырья и условий окисления на состав-и свойства окисленных битумов [42—49] показали, что глубина отбора дистиллятных фракций заметно сказывается как на составе гудрона, так и на характере изменения и глубине термоокислительного превращения последнего. Детальное исследование элементного и компонентного составов тяжелых нефтяных остатков, полученных различными вариантами термической обработки, позволило выяснить характер влияния на направление и глубину превращения их в процессе производства. Полученные экспериментальные данные дали возможность составить общее представление об основных направлениях химических изменений составляющих битум компонентов в процессе его производства в заводских условиях. Чем более жесткой высокотемпературной обработке подвергаются тяжелые нефтяные остатки, тем большую роль в стадии окисления играет углеводородная часть битума. Это видно из данных, характеризующих количественное и качественное изменения в составе углеводородов. При переходе от гудрона к окисленному битуму (БН-У) содержание углеводородов снижается с 65—70 до 40—46%. При этом в окисленном битуме практически отсутствуют парафино-циклопарафиновые углеводороды, а среди ароматических углеводородов преобладают структуры, содержащие в молекуле ди- и нодиконденсированные ароматические ядра. Жидкие продукты окисления ( отдув ) битума на первой стадии окисления (до БН-1П) состоят из низкомолекулярных кислородных производных углеводородов преимущественно алифатической природы. [c.133]

    Детальное раздельное исследование зависимости физических и химических свойств высокомолекулярных компонентов нефти (углеводородов, смол и асфальтенов) от их элементного состава и химического строения позволит, несомненно, решить, наконец, такую важную для здравоохранения и до сих нор не решенную проблему, как установление ответственных за канцерогенную активность нефтей и нефтепродуктов структурных звеньев и атомных группировок в молекулах компонентов нефти. По литературным данным, канцерогенность нефтепродуктов связывается с по-ликонденсированными ароматическими структурами углеводородов и их производных. С этой точки зрения тяжелые нефтяные остатки, в которых все основные компоненты характеризуются именно такой структурой, представляются особенно интересным объектом для исследования. Твердо установлено, что остатки переработки нефти методами пиролиза и каталитического крекинга — остатки с наиболее богатым содержанием конденсированных ароматических углеводородов, характеризуются особенно высокой канцерогенностью. Экспериментально доказано, что канцерогенность этих нефтяных остатков резко снижается или исчезает совсем, если подвергнуть их гидрированию или окислению в присутствии небольших концентраций озона. Снижение канцерогенности в гидрированных нефтепродуктах — это дополнительный довод в пользу применения гидрогенизационных методов переработки тяжелых остатков [31—35]. [c.263]

    Практически весь объем высококипящих фракций каменноугольной смолы, являющихся основным потенциальным источником антрацена и фенантрена, можно использовать в производстве сажи. Высокоароматизированное сырье для сажи, равноценное коксохимическому, получают и из нефти. Высококипящие фракции каменноугольной смолы представляют ценность и как добавки в нефтяные топлива для подсветки факела в металлургических печах, заметно повышая производительность последних и снижая расход топлива. Кроме того, они обладают уникальными антисептическими свойствами и достаточно широко используются для пропитки древесины. Таким образом, сырье для изготовления полициклических ароматических углеводородов (технические фракции) представляет большую народно-хозяйственную ценность и не является бросовым продуктом. [c.102]


Смотреть страницы где упоминается термин Ароматические углеводороды основные свойства: [c.68]    [c.317]    [c.28]    [c.174]    [c.397]    [c.54]    [c.185]    [c.272]    [c.288]    [c.216]    [c.44]    [c.21]    [c.25]    [c.434]   
Теоретические основы органической химии (1964) -- [ c.120 ]




ПОИСК







© 2024 chem21.info Реклама на сайте