Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

распада распределения вещества

    В мономолекулярных реакциях обе важнейшие орбитали ВЗМО и НСМО принадлежат одной и той же молекуле. Переход с ВЗМО электрона на НСМО приводит к изменению,распределения электронной плотности внутри молекулы, она возрастает в области перекрывания, где 5 > О, и уменьшается в области, где 1 ><0. Положение ядер при этом изменяется, они движутся в сторону области, где возросла электронная плотность. При этом происходит перестройка молекулы, ведущая к изомеризации или диссоциации. Разность в энергии ВЗМО и НСМО Играет решающую роль. Если разность невелика,, то молекула, как правило, структурно неустойчива, легко происходит изомеризация с образованием более стабильной структуры, или диссоциация. Разность энергии ВЗМО— НСМО определяет частоту максимума поглощения электронного спектра в видимой или УФ-области. Поэтому из двух молекул с близкой структурой менее устойчива бу дет та, для которой максимумы поглощения лежат в области более длинных волн окрашенные вещества менее стабильны, чем сходные неокрашенные. Сравним, например, подобные трехатомные молекулы Оз и 80г. Голубоватый озон легко распадается на О2 и О, а бесцветная ЗОг значительно стабильнее к распаду на 80 и О. [c.143]


    Распределение компонентов древесины после варки, кг/т целлюлоза — 500, уходящие со сдувочными газами летучие продукты распада — 40, вещества, растворенные в сульфитном щелоке — 460 (илн в пересчете на 1 т целлюлозы 460 0,5=920). [c.261]

    Эманационный метод основан на взаимосвязи между выделением инертного газа при распаде радиоактивного вещества и удельной поверхностью твердого тела. Коэффициент выделения эманации определяется как доля радиоактивных атомов инертного газа, образующихся в твердом теле, которые уходят из этого тела. Для больших зерен, содержащих равномерно распределенные источники инертного газа, имеет место соотношение [c.385]

    В заключение отметим, что химические изменения при -распаде, не сопровождающемся внутренней конверсией, определяются самой сущностью этого процесса — образующиеся при этом атомы являются изотопами элемента соседней группы периоди-. ческой системы Д. И. Менделеева. Это приводит к тому, что их химическое поведение существенно отличается от поведения атомов материнского элемента. Различия в первую очередь проявляются в возникновении при -распаде характерных лишь для дочернего элемента химических форм. Для одного и того же -распада распределение атомов дочернего элемента по различным химическим формам зависит от строения и состава матрицы и условий, при которых протекает -распад. Иными словами,, индивидуальность материнского вещества определяет природу, строение и устойчивость первичных молекулярных ионов дочернего атома. Конечно, возникновение высокозаряженных атомов в результате внутренней конверсии и Оже-эффекта существенна влияет на химическое поведение горячих атомов. [c.236]

    При о -распаде радиоактивного вещества, распределенного в некотором объеме, конечные продукты в виде положительных ионов собираются на отрицательно заряженной игле, давая активный осадок. [c.97]

    Распределение интенсивностей пиков ионов в масс-спектрах индивидуальных веществ обычно находится в качественном соответствии со структурой молекулы массы осколочных ионов, образующихся при диссоциативной ионизации, могут быть предсказаны на основании структурной формулы. Однако следует иметь в виду, что в ряде случаев при распаде молекулярного иона может происходить перегруппировка с миграцией атома Н, а иногда целых атомных групп. [c.22]

    В более простом случае, когда растворенное вещество не образует ассоциатов и не распадается на ионы, уравнение (315) (закон распределения) означает, что отнощение концентраций (точнее, активностей) вещества в обоих растворителях постоянно и не зависит от общего количества растворенного вещества. Так как константа К в уравнении (315) является константой равновесия, она подчиняется рассмотренным выще зависимостям от температуры и давления и может быть рассчитана так же, как и для всякого другого равновесия. [c.259]


    Однако в лабораторной практике проще проводить относительные измерения, когда активность исследуемого препарата сравнивается с активностью эталона с известным содержанием радиоактивного изотопа [распад сек- г) илн имп [сек - г)] или активностью другого исследуемого препарата. Если активности препаратов и эталона измеряют в строго одинаковых условиях (один и тот же детектор и прибор для измерения, одинаковое положение по отношению к детектору, одно и то же вещество, подготовленное для измерения одинаковым способом и равномерно распределенное по объему препарата, слой которого имеет одинаковую толщину и нанесен на одинаковую подложку), то все поправочные коэффициенты сокращаются, и из отношения измеренных активностей можно найти по формуле (5) абсолютную активность препарата. [c.345]

    Основной процесс производства регенерата — процесс девулканизации-обычно осуществляется путем нагревания измельченной резины с мягчителями в течение нескольких часов при температуре 160—190 °С. В процессе девулканизации вулканизованный каучук деструктируется, вследствие этого пространственная структура его частично разрушается. Разрыв пространственной сетки при девулканизации происходит как по месту присоединения серы, так и в основных молекулярных цепях. Пространственная структура вулканизата разрыхляется , то есть уменьшается густота пространственной сетки за счет распада части поперечных связей и некоторой части основных молекулярных цепей, что приводит к образованию растворимой фракции со средним молекулярным весом 6000—12 ООО. Установлено, что каучуковое вещество в регенерате находится в двух различных по строению состояниях в виде массы разрыхленного и набухшего в мягчителе геля (нерастворимая часть) и распределенных в ней частиц золя (растворимая часть)  [c.369]

    Некоторые исследователи пытались четко разделить на два типа эффекты, обусловливающие поляризацию молекул в основном состоянии и приводящие к изменению характера распределения электронов. Один из них действует в условиях приближения атакующего агента, тогда как другой проявляется в переходном состоянии, представляющем собой переходную форму между реагирующими веществами и продуктами реакции. Эти изменяющиеся во времени факторы были названы по аналогии с упоминавшимися выше постоянно действующими эффектами соответственно индуктомерным и электромерным эффектами. Можно считать, что такие эффекты обусловливают скорее поляризуемость, чем поляризацию, поскольку распределение электронов возвращается к распределению, характерному для основного состояния атакованной молекулы, если любой из реагирующих компонентов удален до того, как реакция прошла, или если реально возникшее переходное состояние распадается с выделением исходных продуктов. [c.41]

    Параметры, влияющие на жесткость пиролиза. Важнейший параметр процесса—температура—определяет степень превраш,е-ния исходных веш,еств по реакциям, протекаюш,нм при пиролизе. Так как первичные реакции термического разложения исходных веш,еств можно рассматривать как реакции первого кинетического порядка, скорости их протекания линейно зависят от концентрации исходных веш,еств, а степень разложения ие зависит от их концентрации, но зависит от температуры. От температуры зависит также и доля (из общего количества) образовавшихся на первой стадии различных радикалов, подлежащих распаду и, следовательно, выходы различных низших олефинов. Таким образом, температура процесса — фактор, определяющий как степень разложения исходного вещества (степень превращения), так и распределение продуктов пиролиза [199]. С увеличением температуры в результате первичной реакции повышаются выходы низших олефинов, метана и водорода и снижается выход алканов. [c.73]

    Для хорошо перемешанных резервуаров записывается уравнение сохранения вещества, в котором приход С в результате привноса в резервуар (атмосферу или поверхностные слои океана) уравновешивается выносом в другие резервуары плюс радиоактивным распадом (см. вставку 2.6) микроэлемента во время его нахождения в резервуаре. Для глубинных океанических вод сохранение вещества описывается частичным дифференциальным уравнением адвекции-диффузии. Берется тот коэффициент диффузии, который лучше всего соответствует измеренному глубинному распределению С в океанах. [c.225]

    Азот и азотистые соединения нефти. Содержание азота в советских нефтях колеблется в пределах 0,03—0,28%. В некоторых нефтях зарубежных стран, например в калифорнийских и алжирских, содержание азота доходит до 1,4—2,2%. Полагают, что азот появился в результате распада белков материнского вещества нефти. Согласно данным К. П. Лихушина содержание азота во фракциях нефтей растет вместе с температурой кипения самих фракций и абсолютно и относительно. В одной бакинской нефти, содержащей 0,2% N3, К. П. Лихушин нашел следующее распределение азота но дестиллатным фракциям в керосиновой 0,017%, в газойлевой 0,080%, в соляровой 0,084%, в веретенной 0,096%, в машинной 0,096%, в цилиндровой 0,209%, в гудроне 0,761%. [c.36]


    Кинетический расчет скорости образования зародыша из множества возможных путей избирает один, имеющий явные преимущества. Естественно, что два молекулярных агрегата объединяются при столкновении и что больший агрегат распадается на меньшие, однако эти события очепь редки по сравнению с присоединением и отрывом единичных молекул. Поэтому вполне оправдано раздельное рассмотрение процессов присоединения и отщепления отдельных молекул. Пока не достигнуты размеры зародыша, отрыв более вероятен, чем присоединение. Эта кинетическая игра обмена приводит к такого рода стационарному распределению частиц предзародышевого размера, при котором число образований с числом п молекул в каждом сохраняет некоторое среднее значение до тех пор, пока число отдельных молекул материнской фазы поддерживается постоянным, а капельки, превысившие размеры зародыша ( з) удаляются. Представим себе, что мы постоянно вводим столько же вещества в виде па]за, сколько удаляем его в виде капелек. При этом через всю эту систему проходит стационарный поток, который переводит меньшие агрегаты в большие и па всем своем пути оказывается одинаковым. Определим его величину для интервала, соответствующего агрегатам с числом молекул п + I. [c.119]

    Особенности образования радиоактивных аэрозолей влияют на поведение радиоактивных частиц, загрязнение объектов и эффективность дезактивации. Радиоактивные аэрозоли в атмосферном воздухе образуются в результате следующих процессов диспергирования веществ, содержащих радиоактивные продукты конденсации и десублимации паров радиоактивных веществ адсорбции радионуклидов на атмосферных аэрозольных частицах распада инертных газов с последующей их конденсацией, а также вследствие образования наведенной активности. Образование радиоактивных аэрозолей диспергированием происходит под действием взрыва, распыления жидкости или других процессов. Примерами источников образования радиоактивных аэрозолей диспергированием веществ являются работы по разгерметизации загрязненного оборудования, шлифовка облученных деталей и особенно сварочные работы. Необходимым условием конденсации паров радионуклидов является пересыщение и неравномерное их распределение в воздушной среде, а также присутствие ядер конденсации или зародышей. Одновременно с конденсацией, т. е. переходом пара в жидкость, при сильном охлаждении может происходить процесс десублимации, т. е. переход пара в твердое состояние, минуя жидкое. [c.182]

    Коэффициент распределения экстрагируемого вещества можно изменять, добавляя в систему некоторые вещества. Например, органические кислотй и. оли органических кислот в водных растворах распадаются на ионы. В эфире и<е растнори.мы лишь недиссоциированные молекулы. Следовательно, для сдвига распределения в сторону эфира необходимо понизить степень диссоциации органических кислот и солей в воде. Это достигается добавлением к водному раствору сильной кислоты или соответственно сильного осноаания. Добавление нейтральных веществ, например солей, также часто повышает активносгь органического соединения, растворенного в воде (эфс[)ект высаливания), и способ-аиует его извлечению эфиром. [c.219]

    Пытаясь объяснить наблюдаемое для некоторых полимеров медленное снижение молекулярного веса и быстрое выделение улетучивающихся веществ, один из авторов этой главы около 15 лет назад предложил механизм с преимущественным разрывом концевых связей [300], который приводит к линейной зависимости уменьшения молекулярного веса от степени превращения. Однако этот механизм недостаточен для описания всех возможностей распада. Формально можно было бы рассматривать весь диапазон вероятностей распада. Этот путь, однако, не является удовлетворительным. Действительно, судя по нулевым энергиям углеводородов низкого молекулярного веса, скорости распада, этана и, нанример, пропана и бутанов должны быть различными [301]. На самом деле пиролиз последних двух происходит настолько быстрее, чем пиролиз первого, что это может считаться следствием действительного различия в связях [302]. Однако с увеличением размера молекул различия уменьшаются и должны стать несущественными в очень длинных цепях. Даже при допущении распределения энергий связи остаются не объясненными различия в выходе мономера. [c.280]

    Применение вакуума в процессах разделения смесей почти исключительно диктуется необходимостью понижения температуры, при которой проводится процесс. Чтобы давление во всех частях установки было достаточно низким, используемая аппаратура должна обладать низким гидравлическим сопротивлением. Это — основное требование, предъявляемое к аппаратуре, используемой для разделения смесей под вакуумом. Другое важное требование — обеспечивать необходимую эффективность разделения при малых объемных расходах жидкости по сравнению с объемными расходами пара. Это диктует принятие специальных мер по равномерному распределению жидкости в аппаратах. Еще одно важное требование — минимальное время пребывания смесей и продуктов разделения в аппаратуре при повышенных температурах, поскольку это связано с опасностью ухудшения качества получаемой продукции из-за процессов термического распада, осмоления и др. Чтобы обеспечить это требование, количество жидкости, находящейся в аппаратуре, должно быть минимальным. Это определяет особую роль различных пленочных аппаратов. И, наконец, аппаратура должна быть герметичной, чтобы свести к минимуму подсос воздуха и связанную с этим опасность окисления перерабатываемых веществ. Стремление к удовлетворению, этих требований привело к созданию специфических конструкций аппаратов для разделения смесей под вакуумом. [c.37]

    Важные применения находят искусственные радиоэлементы в биологии, так как при их помощи удается пепосредстенно следить за распределением веществ и их обменом в организмах. На рис, ХУ1-22 приведен снимок срезов помидора, сделанный за счет собственного излучения радиоцинка, поглощенного растением из питающего раствора. Снимок наглядно показывает, что цинк концентрируется в семенах. Если растворить в воде поваренную соль, содержащую примесь радионатрия Ыа (Р, "у-распад, Г = 15 ч), и дать выпить этот раствор человеку, рука которого лежит на ионизационном счетчике, то последний начинает регистрировать радиоактивность уже через несколько минут. Это значит, что ионы Ыа после поступления в пищеварительный тракт почти тотчас же переходят в кровь, которой и разносятся по всему телу. Содержание изотопа С (Р-распад, Т = 5760 л) в углеродистых останках древних культур дает возможность устанавливать важные для археологии исторические даты, [c.522]

    Если частицы распределенного вещества имеют размеры порядка 1 — 100 нм, такие дисперсные системы называются коллоидными растворами, или золями. Частицы, образующие коллоидный раствор, нельзя увидеть в обычный микроскоп, но их можно различить в ультрамикроскопе, где свет падает сбоку или сзади, в результате чего в поле зрения вндны светлые точки, соответствующие рассеянию света диспергнрованныхми частицами. В определенных условиях коллоидные растворы могут распадаться с образованием взвесей и затем расслаиваться. К коллоидным растворам относятся некоторые системы, играющие большую роль в живой природе и в технике, например растворы белков в воде, некоторые клеи и т. д. [c.77]

    Распад радиоактивных веществ подчиняется распределению Пуассона. Если распределение Пуассона применяют к системе, регистрирующей более чем 100 случаев, то распределение приближается к особому случаю нормального гауссовского распределения. Можно показать, что при большом числе наблюдений ошибка среднего значения - выражается соотпо-шепием [c.152]

    Какую же активность можно ожидать от веществ, полученных в результате описанных выше синтезов В приводимых ниже расчетах потери от распада не учитываются. Обычно исходят из 20 мкюри и получают около 0,5 г продукта. Если считать, что обменная реакция дает вуход 65%, то исходное вещество (например, РС1з) должно иметь активность 13 мкюри если превращение этого вещества в инсектицид протекает с выходом 60%, то активность 0,5 г продукта должна составить 7,8 мкюри (эта активность не должна значительно снизиться в процессе очистки). Один милликюри дает 3,7 10 расп сек. В обычных счетчиках с эффективностью счета 15% (т. е. фиксирующих 15% распадов) активность вещества была бы равна 7,8-3,7-107-60-(15/100) (1/500000) = = 5200 имп/мин на 1 мкг. Поэтому можно легко измерить активность 0,01 мкг вещества. Предположим, что 1 г мух обработан инсектицидом в дозе 10 мкг/г и что данный метаболит в конечном счете оказался распределенным на 5 фракций, полученных, например, при хроматографии и подлежащих счету. Если содержание этого метаболита составляет 1% введенной дозы инсектицида, то средняя активность одной фракции (если можно сосчитать всю фракцию целиком) будет равна (1/5)- (1/100) 5200 10=104 имп/мин, что легко поддается измерению. Таким образом, метаболизм подобного инсектицида может быть изучен с достаточной точностью без риска [c.408]

    Действие добавок, возвращающих реакцию к мопомоле-кулярной, с помощью схемы Линдемана объясняется тем, что молекулы добавленного вещества, сталкиваясь с возбужденными молекулами реагирующего вещества, дезактивируют последние, возвращая их в исходное нереакционноспособное состояние, а сталкиваясь с невозбужденными молекулами, они их, наоборот, активируют. Интересно, что молекулы добавляем мых газов увеличивают скорость мономолекулярной реакции до величины, характерной для высокого давления, но не дают возможности превысить эту величину. Следовательно, роль их неспецифична и заключается лишь в поддержании равновесной, по максвелл-больцмановскому распределению, концентрации активных молекул реагирующего вещества. Доля участия молекулы в переносе энергии при мономолекулярном распаде зависит от ее химической природы и в общем возрастает с ростом молекулярного веса и числа атомов в молекуле. Ниже приведена относительная эффективность (т]эф.) дей  [c.166]

    И 1,1-дифенилэтана полностью совпадают. Что касается вещества с молекулярным весом 210 (фракция 43), то характер распределения интенсивностей осколочных ионов в его масс-спектре показывает, что распад этого вещества при ионизащ1и электронами идет по такому же пути, как и 1,1-дифенилэтана. По-видимому, данное вещество является этилпроизводным [c.64]

    Уравнения (3) — (6) — это ур1авнения гидродинамики и термодинамики. Они позволяют найти функции распределения в пространстве и времени составляющих скорости и, Пу, Пг, плотности р, давления р и температуры Т. От поля скоростей и температур зависят движение и распределение веществ в сорбирующей среде, как видно из уравнений (1) и (2). Для /-компонентной системы сорбирующихся веществ будем иметь /урав-. нений баланса веществ (1), / уравнений кинетики сорбции (2) и шесть уравнений гидродинамики [уравнение (4) распадается на три уравнения], т. 0. всего (2/ + 6) уравнений с таким же числом неизвестных величин. [c.6]

    Последнее десятилетие характеризуется вторжением современных физических методов и аппаратуры в исследовательские лаборатории и нейрохирургические клиники, причем методов, не требующих хирургических вмешательств, как говорят, неразрушающего контроля работы мозга. Это и компьютерная томография, позволяющая путем просвечивания тела тонкими пучками рентгеновских лучей во многих направлениях и последующего обсчета на ЭВМ всей совокупности сигналов для каждого направления восстановить трехмерную картину распределения плотности, т.е. рентгеновский образ тела [213]. Распространение получает метод ЯМР-интроскопии (цойгматографии), позволяющий по магнитному ядерно-резонансному поглощению телом радиоволн в градиентных магнитных полях путем, опять-таки, обсчета очень большого числа отдельных измерений получить трехмерную картину распределения атомов, точнее, ядер определенного типа с резонирующим спином в этом теле [214]. Еще один метод заключается во введении в организм, например путем инъекции, химических веществ, содержащих изотоп, который, распадаясь, излучает гамма-кванты. Применяя множество детекторов излучения, можно по распределению направлений вылета гамма-квантов установить трехмерную картину тех областей в биообъекте, где происходит химическое связывание веществ, содержащих позитронно-активную метку, — это метод создания позитронных изображений [215]. Такими способами можно определить индивидуальные особенности строения мозга, распределение веществ и активность химических процессов, но не картину электрических явлений в мозге, лежащих в основе его функционирования. [c.117]

    В последнее время стала развиваться радиационная химия углеводородов и появились исследования радиол иза алканов, доложенные на симпозиуме по радиационной химии углеводородов в 1957 году [146]. Под влиянием облучения таза пучком электронов с энергией порядка 1,5 мэв при обыч-ной температуре могут свободно происходить процессы расщепления молекул алкана на радикалы и непосредственного отщепления молекул водорода и метана На основе изучения цримесей этилена и пропилена в качестве веществ, поглощающих атомы водорода и метил-радикалы, а также результатов изотопического исследования радиолиза смеси этана и полностью замещенного дейтероэтана на масспектрометре, было показано, что большая часть водорода образуется при радиолизе этана путем прямого отщепления его молекул от молекул этана в первичном процессе [146]. Изучение изото-лического распределения метана, образованного при радиолизе системы этан и дейтероэтан, дало доказательство того, что метан возникает путем непосредственного отщепления его молекулы от исходных молекул этана. Таким образом, процессы радиолиза алканов могут происходить под воздейст- вием больщой энергии облучения при обычных температурах по другому механизму, с отщеплением молекул в первичном акте, без участия радикалов. В этом отношении радиолиз несколько схож с высокотемпературным крекингом, при котором относительный вес радикально-цепных процессов снижается и возрастает роль процессов распада, проходящих по молекулярному механизму, что соответствует более высоким порядкам энергий в том и другом случаях. Интересно также, что в условиях радиолиза (25°) могут возникать горячие радикалы, энергия которых соответствует гораздо более высоким температурам, чем температура экспериментов, т. е. распределение по энергиям для таких радикалов не является Максвелл-Больцмановским. С другой стороны, при действии радиации на алканы возникают и радикалы, которые могут тшициировать процессы распада. В этих случаях важной характеристикой инициированного крекинга является общий выход радикалов, способных индуцировать крекинг, отнесенный к определенному количеству поглощенной энергии. Вследствие того, что ионизирующее излучение поглощается молекулами не избирательно, количество поглощенной энергии пропорционально общему числу электронов в единице объема и не зависит от химического строения алкана [147]. В то же время выход радикалов, отнесенный к одинаковой поглощенной энергии, весьма зависит от строения поглощающих молекул. С процессами образования радикалов конкурируют процессы спонтанной де.чактивации возбужденных молекул алканов, связанной с превращением энергии элект- [c.71]

    Ферменты локализованы во всех компартментах клеток. Ядерные ферменты катализируют синтез информационных макромолекул, а также процессы их созревания, функционирования и распада. В митохондриях действуют ферменты энергетического обмена, в аппарате Гольджи — ферменты, катализирующие созревание белков, в лизосомах — гидролитические ферменты. Значительное число ферментов ассоциировано с внешней и внутренними мембранами. Так, ферменты, защищающие клетку от действия чужеродных химических веществ, локализованы в эндоплазматическом рети1сулуме. Распределение ферментов в клетках определяют методом дифференциального центрифугирования гомогената тканей. Локализация некоторых ферментов идентифицирована гистохимическими методами in situ. Для этого при помощи микротома получают срезы ткани и обрабатывают их раствором субстрата. Идентификация продуктов ферментативной реакции облегчена, если последние окрашены. [c.65]

    Это уравнение является весьма общим и справедливо как для гомогенных, так и для гетерогенных реакций. Множитель kTlh, имеющий размерность (секунда)-, представляет как бы частоту распада п. с. Он одинаков для всех реакций и зависит только от температуры. Таким образом, теория позволяет вычислить величину, предэкспоненциального множителя kx, в уравнении k = ko exp —EIRT). Для этого необходимо знание функций распределения исходных веществ и п. с. на основе спектроскопических данных. [c.244]

    В разработанной Г. Эйрингом и М. Поляни теории переходного состояния принимается, что исходные вещества находятся в равновесии с активированными комплексами, т. е. скорость образования последних намного больше скорости их распада, и что распределение молекул реагирующих веществ по энергиям вследствие столкновений соответствует равновесному распределению Максвелла — Больцмана. Это равновесие рассчитывается при помощи методов статистической термодинамики. Переходное состояние (активированный комплекс) можно рассматривать как обыкновенную молекулу, характеризующуюся определенными термодинамическими свойствами, за исключением того, что, кроме обычных трех степеней свободы поступательного движения центра тя кести, оно имеет четвертую степень свободы внутреннего поступательного движения, связанную с движением вдоль путч (координаты) реакции. [c.439]

    Упражненне. Долгоживущее радиоактивное вещество А распадается в В через два промежуточных короткоживущих изотопа Л-> X-с К-> А. Если количество вещества А полагается постоянным, то совместное распределение чисел п. т ядер X, У подчиняется основному кинетическому уравнению-для двух переменных. [c.152]

    Если для получения количественных данных используется система с потоком раствора, то условия перекоса вещества должны быть такими, чтобы можно было точно рассчитать распределение радикалов в ячейке Этого легче всего достигнуть, используя простую и вполне симметричную ячейку Так, удов-легворительиые результаты были получены [197, 198] при использовании цилиндрической ячейки, в которой электрод в виде кольца располагался заподлицо с внутренней стенкой ячейки (рис. 3.42) Резонатор находился неносрсдсгвенно под электродом. Если течение достаточно медленное и поток в основном ламинарный, то можно провести математические расчеты и получить уравне нгя, связывающие интенсивность сигнала ЭПР со скоростью потока и с кинетическими параметрами, содержащими константу скорости. С помощью такой ячейки можно измерить консганты скорости реакции второго норядка для распада радикалов, их диспропорционирования и димеризации вплоть до значений 10 л/(моль с). [c.149]

    Экспериментально установлено, что коэффициент а является функцией распределения по размерам частиц поверхностного слоя почвы, степени шероховатости последнего и наличия в нем цементирующих агентов он зависит также от протяженности поля вдоль преимущественного направления ветров в данном регионе и, наконец, от ряда метеорологических факторов. Увеличение коэффициента а, соответствующее повышению эрозиоустойчивости почвы п снижению уровня продуцирования почвенного аэрозоля, наблюдается при увеличении шероховатости почвы не склонной к эрозии (за счет уменьшения скорости ветра у поверхности и повышения уровня к), при повышении влажности почвы (за счет увеличения по механизму водородных связей силы сцепления между отдельными почвенными частицами, покрывающимися водными оболочками), при наличии на поверхности разлагающихся (на определенном этапе) органических веществ, продукты распада которых обладают цементирующим свойством. Наконец, увеличение коэффициента а наблюдается для почв, поверхностный слой которых состоит либо из крупных крупинок преимущественно одного и того же диапазона эквивалентных диаметров, либо содержит большое количество очень мелких частиц (последние, активно прилипают к большим частичкам, увеличивая их массу и связь с поверхностью, и таким образом предотвращают сальтацию). [c.9]

    Представления о структуре аморфных полимеров в конденсированном состоянии как о системе перепутанных цепных молекул привели к разработке молекулярных механизмов пластицирующего действия добавок низкомолекулярных веществ, вводимых в такие полимеры, выражаемого правилами мольных [1] или объемных [2] долей. Влияние низкомолекулярных веществ на механические свойства полимеров рассматривалось в этих случаях на молекулярном уровне характеристики явления пластификации. Однако в последнее время эти представления претерпели существенные изменения. Оказалось, что полимеры представляют собой систему высокоупорядоченных вторичных структурных образований [3], имеющих в отдельных случаях строгую геометрическую огранку, сходную с кристаллическими формами [4—7]. Новые данные, полученные по характеристике структуры аморфных полимеров, оказались весьма плодотворными для понимания явления пластификации полимеров низкомолекулярными веществами, которые ограниченно совмещаются с полимерами. Было показано, что влияние именно таких низкомолекулярпых веществ на механические свойства полимеров, определяющие их пластифицирующий эффект, связано со степенью распада надмолекулярных структур в полимерах. Можно представить, что процессы распада надмолекулярных структур в полимерах имеют такой же ступенчатый характер, как и процессы самого структурообразования. Полное разрушение всех вторичных структурных образований характеризуется возникновением термодинамически устойчивого раствора [8]. Уменьшение хрупких свойств материала в этом случае приводит к так называемой внутри-пачечной пластификации полимера [9]. Введение в полимер низкомолекулярных веществ, ограниченно совмешающихся с ним и вызывающих разрушение вторичных надмолекулярных образований, приводит к полученииз системы из молекул таких веществ, равномерно распределенных между первичными надмолекулярными образованиями — пачками цепей. Если при этом уменьшаются хрупкие свойства полимерного материала, имеет место так называемая межпачечная пластификация полимера [9]. Наконец, можно представить и существование начального акта распада, который должен характеризоваться нарушением контактов между вторичными надмолекулярными структурными образованиями. При этом подвижность таких сложных образований должна возрасти, а количество низкомолекулярного вещества, сорбированного на местах контактов, должно быть, по-видимому, весьма небольшим. Излон енные соображения явились предметом настоящего исследования. [c.387]

    Комплексное применение совокупности новых препаративных методов ЭМ исследования полимеров (механическая и ультразвуковая диспергация, контрастирование продуктов дробления, использование метода реплик, ультратонких срезов, отражательной и сканирующей электронной микроскопии и т. п.) создали условия для выяснения характера НМС целлюлозы [6, 7]. Оказалось, что если диспергировать в жидкости пеболь-щую навеску волокна, то удается наблюдать распад исходного волокна на удлиненные образования, так как при дроблении полимер разрушается в первую очередь по границам структурных образований. Поперечные размеры продуктов дробления заключены в достаточно широком интервале (рис. П.1,с). Малоконтрастность снимков, не позволяющая обнаружить никаких более тонких деталей, обусловлена тем, что полимерные объекты состоят из слаборассеивающих элементов (в основном углерода), а соседние области мало различаются по толщине. Поэтому препараты для прямого исследования необходимо контрастировать , создавая неравномерное распределение посторонних веществ, содержащих тяжелые атомы. Для этой цели применяют методы косого напыления металлов в вакууме негативного контрастирования, а также пропитку за счет диффузии паров 0з04 или иода [8, гл. 9]. [c.87]

    Насколько невероятно то, что несколько молекул могут принять участие в одном й том же акте, в результате которого образуется сложная химическая структура, настолько же невероятно и то, что такая структура в условиях, благоприятствующих ее разложению, сразу же распадается на более чем два фрагмента. Действительно, подобное превращение потребовало бы одновременного разрыва нескольких связей. Согласно закону распределения энергии между молекулами, значительно более вероятно, что происходит последовательное поглощение энергии для разрыва отдельных групп связей, чем накопление суммарной энергии для одновременного разрыва всех связей. Только сильноэкзотермические системы, например взрывчатые вещества, могли бы явиться исключением из этого правила. [c.22]

    Констебл [1J, а вслед за ним Шваб [3, 6] пытались объяснить наличие этой зависимости статистическим распределением активных центров по энергии их взаимодействия с реагирующими веществами. Поскольку Z для гетерогенных каталитических реакций имеет смысл величины, пропорциональной или величине активной поверхности, или числу активных центров катализатора, а Е — энергия активации каталитического процесса, увеличение числа активных центров сопровождается понижением их средней эффективности. Таким образом, линейная зависимость меж-ду Ig г и становится, казалось бы, качественно понятной. Более того, по Швабу и Кремер [2], постоянная /г равна где 0 имеет смысл температуры приготовления или термической обр-1ботки катализатора, выраженной по шкале Кельвина. Попытка экспериментального обоснования этого соотношения (так называемого 0-правила Шваба ) была предпринята Кремер 7] иа примере каталитического распада спирта на окислах П1 группы. При изменении энергии активации окисла к окислу более чем в два раза постоянная h существенно не изменилась и ее среднее значение соответствовало 0 = 940° К, т. е. как раз той температуре, при которой катализаторы были прогреты перед употреблением. [c.204]


Смотреть страницы где упоминается термин распада распределения вещества: [c.351]    [c.386]    [c.49]    [c.129]    [c.389]    [c.351]    [c.252]    [c.337]    [c.166]    [c.195]    [c.252]    [c.417]    [c.229]    [c.820]   
Радиохимия и химия ядерных процессов (1960) -- [ c.14 ]




ПОИСК







© 2025 chem21.info Реклама на сайте