Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Влияние растворителя вязкость

    Вискозиметрия является универсальным и доступным методом изменил состояния макромолекул в растворе. Если ставится задача такого типа, например с целью подбора наилучшего растворителя или определения молярной массы полимера, то самым надежным способом исключить всевозможные вторичные эффекты (типа структурирования) является исследование разбавленных растворов. Критерии разбавленности полимерных растворов могут сильно отличаться от критериев для растворов низкомолекулярных веществ. Приведенная выше количественная оценка показала, что концентрация 1 масс. % может оказаться очень большой с точки зрения ее влияния на вязкость растворов. Заранее критерии разбавленности обычно неизвестны. С другой стороны, работа с сильно разбавленными растворами не обеспечивает требуемой точности измерения вклада полимера в вязкость раствора. По этим причинам практически во всех случаях необходимо исследовать концентрационную зависимость вязкости растворов (находить изотермы вязкости) и затем определять значение констант уравнения изотермы при минимальной концентрации путем экстраполяции изотермы к нулевой концентрации полимера. Отсюда следует, что, во-первых, необходимо располагать уравнением изотер.мы вязкости и, во-вторых, коэффициенты этого уравнения должны иметь определенный физический смысл, делающий их значения пригодными для суждения о состоянии полимера в растворе. Таковым является уравнение Эйнштейна  [c.741]


    Выше уравнение Эйринга было рассмотрено в связи с обсуждением активационного механизма течения полимеров. Это уравнение было модифицировано Ри и Эйрингом с целью учета существования распределения времен релаксации расплава полимера. В другой работе Ри и Эйринг распространили свою теорию и на растворы полимеров. Для этого растворитель рассматривался как ньютоновская единица течения, а само уравнение было модифицировано с учетом наличия различных компонентов, обладающих разными вязкостью, временами релаксации и занимающих различный объем. При этом удается также учесть влияние на вязкость скорости сдвига. [c.80]

    ВЛИЯНИЕ РАСТВОРИТЕЛЯ НА ВЯЗКОСТЬ УМЕРЕННО КОНЦЕНТРИРОВАННЫХ РАСТВОРОВ ПОЛИМЕРОВ [c.214]

    Это правило в большинстве случаев непригодно для трактовки влияния растворителя, хотя оно было предназначено отразить именно это влияние. Так, при 20° С вязкость метилового спирта примерно в 2 раза меньше [c.441]

    ЛИОТРОПНЫЕ РЯДЫ — ряды, в которых ионы последовательно располагаются по величине их влияния на свойства растворителя в растворе или дисперсионной среды в дисперсной системе. Например, Л. р. ионов, размещенных по их возрастающему влиянию на вязкость и поверхностное натяжение Еодных растворов, на растворимость в воде, на набухание высокомолекулярных веществ (белков, пектинов, агар-агара, крахмала и др.), на застудневание водных растворов таких веществ, а также их высаливание из растворов и т. д. Расположение ионов в Л. р. зависит от их способности связывать воду, которую они отнимают от гидратированных молекул, растворенного вещества или частиц дисперсной фазы. Наиболее изучен ряд неорганических анионов SQ2-, F-, 107, Br0 , l-, 10J-, Вг- <0 и т.д., менее четко выражено отличие в Л. р. однозарядных Li+, Na+, К" , Rb+ и двузарядных Mg +, a +, Sг , Ba + катионов. Впервые Л. р. по высаливаншо яичного альбумина натриевыми солями различных кислот был установлен R 1888 г. Г. Гофмейстером. Процессы ьысаливания имеют большое практическое значение в технологии многих производств. [c.148]

    В настоящее время считается установленным, что полярные растворители, как правило, увеличивают скорость реакций, хотя известны и исключения. Вообще под влиянием растворителей ускоряются те реакции, при которых в среде, склонной к поляризации, увеличивается скорость перехода реагирующих молекул из гомео-полярной в гетерополярную (ионизированную) форму. Роль растворителя заключается в превращении реагирующих молекул в более реакционноспособное состояние. Однако общей теории ускоряющего или замедляющего действия растворителей еще нет, так как налагаются такие факторы, как величины дипольных моментов, когезия, ассоциация молекул, возможность образования комплексов, показатели преломлений,-вязкости, скорости диффузии и т. д. [c.48]


    В зависимости от растворителя значения подвижности могут меняться. На подвижность ионов существенное влияние оказывает вязкость. Между вязкостью растворителя т)о и подвижностью существует зависимость [c.308]

    Влияние растворителя на подвижность ионов подтверждается данными табл. 13, из которой следует, что в органических растворителях эта величина может меняться в несколько раз, причем во многих случаях в неводных растворах подвижности меньше, чем в водных. Однако встречаются и исключения. Для растворов в ацетоне и цианистом водороде влияние растворителя на подвижность иона связывают с вязкостью растворителя т]о. Подставляя формулу Стокса в выражение (III.6), получим  [c.90]

    Характер влияния давления на кинетику и механизм термолиза, в том числе на величину Д V, зависит от характера взаимодействия реагентов и переходного состояния с растворителем, вязкости растворителя и природы процессов в клетке, которые проанализированы в [11] и гл. 4 настоящей книги. [c.229]

    Интересны представления относительно распределения плотности сегментов в адсорбционном слое, согласно которым существует два слоя более плотный нижний слой вблизи или на поверхности, который, однако, имеет плотность ниже плотности монослоя из сегментов из-за стерических затруднений, и удаленный менее плотный слой, состоящий из петель, т. е. из полимера, не связанного прямо с поверхностью [1591. Этот слой отвечает за кажущийся избыток адсорбции. Вклад петель в эффективную гидродинамическую толщину слоя зависит от объемной концентрации сегментов и жесткости петель. Однако примерная пропорциональность характеристической вязкости указывает на то, что верхний слой имеет структуру, аналогичную структуре свободных клубков в растворе. Тот факт, что влияние растворителя и температуры одинаково в адсорбционном слое и в фазе раствора, подтверждает эту картину. [c.90]

    Влияние растворителя на электропроводность прежде всего складывается из влияния его вязкости, диэлектрической проницаемости и специфического взаимодействия с ионами. Силы вязкости растворителя тормозят движение ионов. Диэлектрические свойства среды влияют на эффективную напряженность (электрического) поля и межионный потенциал. Последние величины влияют не только на скорость ионов, но и на притяжение между разноименными ионами и, следовательно, на степень их связывания в пары. Специфическая сольватация ионов может оказывать воздействие как на подвижность, так и на ассоциацию. [c.12]

    Другим примером может служить осаждение из водных растворов спиртом таких гидратированных эмульсоидов, как желатина. Поскольку при добавлении достаточного количества жидкости, смешивающейся с растворителем, но являющейся нерастворителем для эмульсоида, последний осаждается, было бы странно, если бы при добавлении меньшего количества нерастворителя не обнаруживалось бы изменения свойств раствора еще до достижения точки осаждения. Это действительно имеет место, как видно по влиянию разбавителя на вязкость золя. Так, при добавлении к резиновому клею малых количеств ацетона можно ждать понижения его вязкости вследствие разбавления, но вязкость понижается гораздо больше, чем должна была бы понизиться только от этой причины. Десольватация, к которой приводит добавление нерастворителя, должна приводить к уменьшению размера частиц, а это, в свою очередь, приводит к понижению вязкости. Однако, прежде чем произойдет осаждение, десольватация должна достигнуть значительной степени. Такое влияние на вязкость эмульсоидов добавок смешивающегося с раствором нерастворителя — общее явление.  [c.183]

    Подобная зависимость вязкости от термической предыстории объясняется наличием кристаллической структуры в полимере. Это связано с тем, что всегда существует некоторое число таких участков двух соседних полимерных цепей, которые расположены достаточно близко друг к другу в пределах действия молекулярных сил. И не нужно много таких областей, чтобы оказать заметное влияние на вязкость раствора. При низких температурах прогрева эти кристаллические области сохраняются в растворе, как бы увеличивая среднюю длину цепей и вызывая повышение вязкости раствора по сравнению с раствором, в котором такие области отсутствуют. С повышением температуры возрастает подвижность молекул, что создает благоприятные условия для проникновения растворителя между полимерными молекулами даже в кристаллических областях. Если температура достаточно высока, то происходит [c.152]

    Вязкость концентрированных растворов полимеров в большой мере зависит от природы полимера и растворителя [58, с. 379], Влияние растворителя особенно сильно сказывается в случае растворов жесткоцепных полимеров (если вязкость двух растворителей отличается, например, в несколько раз, то вязкость растворов в этих растворителях при достаточно высоких концентрациях полимера будет отличаться на несколько порядков), в случае же растворов гибкоцепных полимеров оно начинает существенно проявляться при температурах ниже температуры стеклования. С повышением температуры концентрационные кривые вязкости в разных растворителях сближаются и прн температуре выше температуры стеклования полимера вязкости растворов практически отличаются только на значение вязкости растворителя. Вообще вязкость растворов полимеров отчасти зависит от вязкости растворителей чем выше вязкость растворителя, тем выше вязкость раствора. [c.78]


    Влияние природы растворителя на вязкостные свойства растворов полимеров зависит от рассматриваемой области концентрации . В области низких концентраций вязкость растворов полимеров в плохих растворителях меньше, но она сильнее изменяется с концентрацией. Поэтому с повышением концентрации Вязкость растворов полимеров в плохом растворителе может оказаться выше, чем в хорошем. Природа растворителя слабо влияет на характер зависимости вязкости от молекулярной массы. Для неполярных и слабонолярных полимеров, отличающихся высокой гибкостью макромолекул, термодинамическое качество растворителя очень мало влияет на вязкость их растворов. При заданной объемной концентрации таких полимеров разница в вязкости растворов определяется в основном различием значений вязкости используемых растворителей. Качество растворителя оказывает огромное влияние на вязкость растворов жесткоцепных полимеров, причем направление этого влияния существенно различно в области разбавленных и концентрированных растворов. [c.210]

    Влияние растворителя на вязкость растворов полимеров 223 [c.223]

    Важные результаты, касающиеся проблемы инверсии влияния природы растворителя на вязкость раствора, или пересечения концентрационных зависимостей относительной вязкости растворов в различных растворителях, были получены в работе [4]. Для любых полимеров (если не принимать во внимание частного случая растворов полимеров со специфическими межмо-лекулярными взаимодействиями в бинарных растворителях) хорошо известен эффект уменьшения характеристической вязкости и, следовательно, относительной вязкости в области разбавленных растворов по мере ухудшения качества растворителя. Этот эффект обусловлен чисто конформа-ционными причинами. Такое же соотношение между значениями вязкости сохраняется и для растворов гибкоцепных полимеров в широкой области составов. Поэтому для таких растворов никакой инверсии хода концентрационных зависимостей вязкости не наблюдается. Иначе обстоит дело с растворами жесткоцепных и полярных полимеров, склонных к интенсивному структурообразованию. В этом случае с ухудшением качества растворителя вязкость концентрированных растворов возрастает, и тем резче, чем выше концентрация раствора, т. е. происходит инверсия концентрационных зависимостей вязкости. Этот эффект связывают [4] с влиянием растворителя на распад структуры в концентрированном растворе, тем более глубокий, чем выше качество растворителя. При этом чем выше жесткость цепи полимера, тем при меньших концентрациях наблюдается инверсия, т. е. до меньших предельных концентраций сохраняются закономерности влияния природы [c.246]

    На специфическую роль растворителя в структурообразования полимера в растворе указывает различие в значениях вязкости расплавов полимеров, полученных из разных растворителей [5, 6], а также растворов разных исходных концентраций [6]. Структурные различия полимера, определяющие его вязкость в зависимости от природы растворителя и концентрации исходного раствора, оказываются столь сильными, что память о них сохраняется даже после удаления растворителя. Об очень сильном влиянии растворителя в высококонцентрированных растворах на структуру полимера (опять-таки проявляемую через измеряемые показатели реологических -свойств) свидетельствует также обнаружение очень резкого снижения вязкости расплава полимера при введении в него микроколичеств определенных растворителей [7). [c.247]

    Отсюда вытекает необходимость учитывать влияние растворителя на потенциалы полуволн и величину предельного тока. Применение разных растворителей определяет различие в вязкости среды, оказывающей существеннейшее влияние на величину коэффициента диффузии ионов или молекул исследуемого вещества и, следовательно, на величину диффузионного тока. [c.246]

    На рис. 9 показана зависимость скорости реакции сшивания частично омыленного поливипилацетата (ОПВА) терефталевым альдегидом (ТФА) от скорости сдвига. Видно, что практического влияния условия проведения реакции на кинетику не оказывают. Вместе с тем, как видно из рис. 10, влияние на вязкость системы и точку гелеобразования — заметное. При этом малые величины скорости сдвига уменьшают время гелеобразования, т. е. повышают эффективность сшивания за счет уменьшения вероятности обрыва, цепи развития сетки. Очевидно, что именно к этому эффекту должно привести разворачивание клубка, если определяющим в реакции обрыва цепи является внутримолекулярная реакция сшивания удаленных по цепи звеньев. При больших значениях скорости сдвига время гелеобразования снова увеличивается. Но при этом происходит качественное изменение структуры геля образуется не единая пространственная сетка, а мелкие набухшие в растворителе агрегаты. Причиной этого является влияние силового поля на структуру полимера в момент начала ее образования, вблизи точки геля. Разрывы/ слабосшитой системы приводят к увеличению времени гелеобразования и к появлению сетки в локальных областях. Протяженных участков сетки в этих условиях, по-видимому, образоваться не может. [c.120]

    Здесь Д — коэффициент диффузии, п — число электронов, принимающих участие в реакции, г—вес ртути, вытекающей из капилляра в секунду, t—время образования капли. Изменение этого времени мало сказывается на высоте волны, так как t входит в степени Ve. Величина tn, как известно, мало изменяется с растворителем. Следовательно, для количественной интерпретации зависимости г д ф от растворителя следует учитывать изменение величин п, Д л с под влиянием неводных растворителей. Эти изменения могут явиться следствием 1) влияния изменения вязкости на коэффициент диффузии в связи с изменением растворителя, 2) влияния сольватации ка коэффициент диффузии, 3) изменения активной концентрации восстанавливающегося вещества в связи с изменением силы электролита, 4) изменения взаимодействия вещества с фоном в связи с изменением растворителя, 5) изменения характера восстановления вещества под влиянием растворителя (изменение величины я), 6) изменения pH под влиянием неводного растворителя. [c.930]

Рис. 58, Влияние исходной вязкости (молекулярного веса) на деструкцию полистирола, пластифицированного растворителями. Рис. 58, <a href="/info/415838">Влияние исходной</a> вязкости (<a href="/info/3779">молекулярного веса</a>) на <a href="/info/370112">деструкцию полистирола</a>, пластифицированного растворителями.
    В табл. 282, кроме влияния количества растворителя, введенного в начале процесса, иа иыход, вязкость и индекс вязкости, отражено также и влияпие температуры. Опыты проводилнсь в 5-литровом автоклаве при при-мененин около 125 г безводного хлористого алюминия как катализатора. Из табл. 282 видно, что с увеличением количества растворителя вязкость полученного полимера и индекс вязкости последнего ухудшаются. Повышение температуры при одинаковом количестве растворит( ЛЯ также ухудшает эти по1 азатоли. [c.597]

    Дан анализ современного состояния физико-химических методов воздействия на призабойную зону пласта. Приведены результаты экспериментальных исследований по изучению свойств граничных слоев нефти и влиянию аномалий вязкости на нефтеотдачу. Предложен комплекс методов, позволяющий оценивать эффективность новых химических веществ в процессах нефтедобычи. Представлены результаты лабораторных исследований новых химических веществ класса ацеталей для интенсификации притока нефти к скважинам. Приведены решения различных задач вытеснения нефти оторочками химических реагентов и растворителей. Описан новый метод контроля за процессом физико-химического воздействия на нефтяные пласты. [c.2]

    Суммарный эффект от взаимодействия оксидата с породой определяется следующими факторами влиянием растворителя, вьщелением тепла при реакции с породой, вьщелением СО2, образованием ПАВ и, наконец, увеличением вязкости вытекающего агента. Растворы оксидата снижают также набухающую способность рассмотренных типов глин (каолинит, бентонит) по сравнению с набуханием их в пластовой и водопроводной воде. С увеличением концентрации монокарбоновых кислот набухание глин уменьшается [17], Оксидат обладает повышенной бактерицидной активностью, обеспечивающей полное подавление сульфатвосстанавли-вающих бактерий при низких концентрациях (на 80-100% при концентрациях 0,001-0,05 мас.%). [c.17]

    Были, поставлены исследования по выяснению влияния растворителя на скорость разложения бензадида при различных температурах. При этом было установлено, что не существует никакого npoftoro соответствия между константами скорости реакции и диэлектрической постоянной, дипольным моментом, вязкостью или точкой кипения растворителя. [c.456]

    В настоящее время влияние растворителя на полимеризацию следует рассматривать не только с точки зрения полярности, но и в рамках координационной модели , развитой для химии ионных реакций в неводных растворителях и характеризующей среду в виде донорных (ВМ) и акцепторных (АМ) чисел 78, 232]. Оптимальная комбинация донорных (сольватация катиона) и акцепторных (сольватация аниона) свойств среды с учетом свойств мономера как растворителя будет благоприятствовать разделению и стабилизации зарядов. Так, например, нитрометан более хороший растворитель, чем хлористый метилен (ОМснзШ2= 2,7, = О, АМснзЫ02 = 20,4, АКсн2С12 0) за счет специфической координации и неспецифической сольватации. Важным свойством среды является вязкость. Она может влиять на наиболее быстрые стадии полимеризации (рост, обрыв). Хотя надежно измеренные кинетические константы при полимеризации изобутилена находятся ниже диффузионного предела, накопление гелеобразного продукта вокруг твердого катализатора может представлять случай диффузионного контроля реакции. [c.95]

    Влияние температуры проявляется через влияние на вязкость, 10 тут тоже имеются противоречивые данные и зависимость носит (Кстремальный характер, хотя вообще с уменьшением вязкости юзрастает эффективность деструкции. Но повышение вязкости является следствием агрегации и в зтом смысле противоречит влия-ию качества растворителя. Существуют представления [589] о азличии механизма деструкции для разбавленных и концентри- [c.251]

    При отсутствии других данных, кроме приведенных выше можно вывести заключение, что влияние растворителя на эффгктивность насадки в лабораторных колонках невелико. В промышленных установках влияние растворителя или невелико, или же он действует в направлении, согласном с зависимостью вязкость—эффективность тарелки [38] по этой зависимости предсказывается уменьшение эффективности тарелки при увеличении вязкости жидкости на тарелке. Желательно было бы иметь дополнительные данные по этому вопросу. [c.301]

    Большое влияние на вязкость концентрированных растворов полимеров оказывает термодинамическое сродство растворителя к полимеру. Увеличение взаимодействия полимер — растворитель, т. е. улучшение качества растворителя, повышает гибкость цепей макромолекул, что приводит к уменьшению вязкости раствора. Однако такая зависимость не всегда проявляется. Во-первых, вязкость может быть столь высока, что увеличение гибкости цепи не может ее компенсировать, во-вторых, в концентрироваиных растворах большую роль играют надмолекулярные образования, характер которых предопределяет реологическое поведение растворов. [c.78]

    Мидлман [10] достиг некоторого успеха при рассмотрении влияния растворителя, вводимого в полимер, на вязкость концентрированных растворов. Так, он нашел, что экспериментальные данные, относящиеся к растворам полинзобутилена, обобщаются при использовании координат и только для растворов с ( [t ]) > 5. Выбор значения Ь равным 0,625 связан с использованием модели Уильямса. Для области составов, где (с[т)]) < 5, т) может быть представлена в виде зависимости от с [т], однако для более высоких концентраций этот метод обобщения экспериментальных данных не применим. Результаты Мидлмана означают, что параметр [i]], имеющий смысл относительного объема, занятого полимером в растворе, сохраняет свое значение до области удивительно высоких концентраций, в которой определяющую роль играют межмолекулярные взаимодействия высших порядков, а роль растворителя несущественна. Однако еще из работы [10а] известно, что в области достаточно высоких концентраций применение параметра с[т ] в качестве аргумента для r оказывается недостаточным. [c.218]

    Однако можно эмпирически определить с тем, чтобы учесть влияние растворителя на вязкость, связанное с эффектами такого рода, если предположить, что должно быть пропорционально тенденции макромолекул к образованию ассоциатов. Такая тенденция соответствует снижению межмолекулярного взаимодействия полимер — растворитель, а следовательно, приводит к повышению осмотического давления. Исходя из этих соображений, следует полагать, что в области концентрированных растворов I" должна быть обратно пропорциональна осмотическому давлению Тогда для выбранной концентрации с, сравнивая данные рис. 12 и рис. 1 и 2, можно видеть, что (Г /т15) . причем это соотношение справедливо для различных растворителей, но коэффициент гро-порциопальности зависит от концентрации. Комбинируя перечисленные параметры, можно получить формулу [c.239]


Смотреть страницы где упоминается термин Влияние растворителя вязкость: [c.441]    [c.85]    [c.388]    [c.275]    [c.11]    [c.303]    [c.217]    [c.247]    [c.681]    [c.548]   
Влияние растворителя на скорость и механизм химических реакций (1968) -- [ c.150 , c.156 ]




ПОИСК







© 2025 chem21.info Реклама на сайте