Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Силоксановая связь

    Кремнийорганические соединения и полимеры на их основе. Кремнийорганические соединения содержат органические радикалы, но основная Цепь полимера состоит из атомов кремния, соединенных между собой через атомы кислорода, — силоксановая связь. [c.490]

    Кислородные соединения кремния, содержащие силоксановую связь 51—0, занимают главное место в химии этого элемента. Специфические свойства этой- обширной группы природных и синтетических материалов, включающей различные формы кремнезема, силикаты, алюмосиликаты и др., прежде всего обусловлены природой силоксановой связи. Средние значения длины связей в органических соединениях кремния и силикатах приведены ниже  [c.27]


    Природа и реакции силоксановых связей, т. е. связей 31—О и группировок 81—0—51 (элементарных ячеек скелета полисилоксанов), подробно рассмотрены в [1—3]. [c.462]

    Еще более широкие возможности открывает варьирование состава минералов в силу их исключительного многообразия. Кварц и силикаты, слагающие подавляющее большинство-пород, содержат в основном связи Si—О и связи катион — кислород атомы алюминия могут быть катионами или заменять Si. Эти связи играют различную роль при разрушении силикатных минералов разных структурных типов [275]. В кварце и каркасных силикатах (полевых шпатах) обязательно рвутся силоксановые связи в цепочечных и ленточных си-ликатах возможно скольжение и разрыв по определенным плоскостям, образованным только связями Ме—О в островных силикатах связи Si—О—Si отсутствуют. Перечисленные связи различаются по геометрическим параметрам (длина, валентные углы), распределению электронной плотности и энергии связи колебания этих величин для отдельных классов силикатов имеют более узкие пределы, [276]. Важно, что во всем диапазоне изменений полярности связей Si—О они остаются существенно ковалентными, несмотря на большую разницу [c.93]

    Для полимеризации циклосилоксанов предложено много различных катализаторов и каталитических систем, включающих главным образом сильные протонные и апротонные кислоты и сильные основания. Выбор катализатора определяется природой заместителей у кремния, влияющих на реакционную способность силоксановых связей, а также числом звеньев в цикле и необх )-димостью исключить возможность отщепления заместителей в процессе полимеризации. [c.473]

    Кремнийорганические полимеры содержат очень прочные силоксановые связи E=Si—О—Si= и представляют собой исключительно ценные синтетические материалы (стр. 482). [c.306]

    Как и при любой полимеризации с раскрытием цикла, кроме обычных стадий инициирования, роста цепи и передачи (или обрыва) цепи примесями или регуляторами молекулярной массы, при полимеризации циклосилоксанов может иметь место передача цепи с разрывом или деполимеризация вследствие атаки активным центром силоксановых связей, соответственно в другой полимерной цепи или в своей цепи. Поэтому в общем случае полимеризация циклосилоксанов является обратимым процессом  [c.472]

    Силаны на воздухе самовоспламеняются и, сгорая, образуют 8Ю2 и Н2О, что указывает на высокую прочность силоксановой связи 81—О—81 (445 кДж/моль). [c.378]

    Большой расход катализатора объясняется образование.м сульфатных мостиков [реакция (17)], а падение молекулярной массы при добавлении воды — их омылением. На стадии дозревания реакции (19) и (20) становятся основными, так как разбавленная НгЗО уже не расщепляет силоксановые связи в этих условиях. [c.474]

    Действительно, корректная обработка многих результатов, полученных в самых разнообразных условиях, позволяет убедиться в выполнении соотношения Гриффитса Рс а. если брать для расчетов значения удельной свободной энергии тех поверхностей, которые реально успевают образоваться в ходе разрушения. Так, прочность композитов из кварцевого песка с хлоридом натрия, измеренная на воздухе и в воде, оказывается связанной с поверхностной энергией сухой и увлажненной силанольной поверхности [272]. Если же проанализировать результаты измерений скорости роста трещины во влажном кварце [298], то из анализа полученного отношения нижнего и верхнего пороговых значений фактора интенсивности напряжений можно сделать вывод, что при напряжениях выше верхнего порога рвутся силоксановые связи без участия воды, а при докритическом росте трещины успевает образоваться гидроксилированная поверхность и произойти ее [c.97]


    Эти элементы могут образовывать как островные структуры, в которых тетраэдры [5Ю4] располагаются изолированно друг от друга, окружая катионы, так и конденсированные структуры, в которых тетраэдры соединяются друг с другом в комплексы через общую кислородную вершину двух соседних тетраэдров с образованием силоксановой связи 81—О—8 . Если конденсируются по два тетраэдра, то образуются островные силикаты с группой [c.100]

    Различные заместители в метильных группах придают разные свойства, специфические для данного полимера но общим является то, что силоксановая связь — это очень прочная связь, сохраняющая стойкость при высоких температурах. Поэтому кремнийорганические полимеры значительно более теплостойки, чем отвечающие им обычные органические полимеры их прочность в меньшей мере зависит от колебаний температуры. [c.205]

    Затем между цепями образуется силоксановая связь  [c.48]

    В зависимости от природы органических радикалов, связанных с кремнием, термическая устойчивость некоторых кремнийорганических соединений довольно высока. Например, заметный пиролиз фенилхлорсиланов и метилхлорсиланов происходит при температурах свыше 500°С. До 200°С связь —5 —С— устойчива к окислению и не ря.эрушается многими минеральными кислотами и щелочами. В то же время связь —51—51— разрушается уже при нагревании до 200°С и неустойчива к действию различных химических реагентов (например, щелочи). При окислении эта связь превращается в силоксановую — 51—0—51—, которая содержится в большинстве кремнийорганических и неорганических (кварц, асбест, силикатные стекла) полимеров. Силоксановая связь исключительно прочна— выдерживает очень высокую температуру (1 л 5Ю2=1713°С). Однако термическая устойчивость кремнийорганических соединений значительно уступает кварцу или силикатам. Это связано с окислением органических радикалов, соединенных с атомом кремния. Силоксановая связь устойчива и ко многим химическим реагентам. [c.186]

    В пространственной структуре атомы кремния отдельных цепей соединены через кислород (силоксановая связь)  [c.265]

    При действии каталитических количеств реагентов, расщепляющих силоксановые связи в определенных условиях, на любые бифункциональные силоксаны (как линейные, так и циклические) или их смеси, в том числе на смеси продуктов гидролиза диорганодихлорсиланов, происходит перегруппировка, приводящая к установлению равновесия между линейными силоксанами различной молекулярной массы (включая высокомолекулярный полимер) и циклосилоксанами. Для гидролизатов оно описывается уравнением  [c.469]

    Полимеризация циклосило.ксанов осуществляется в присутствии каталитических количеств нуклеофильных или элек-трофильных реагентов в условиях, при которых они расщепляют только связи Si—О—Si и не затрагивают связи Si—С или какие-либо связи в органических радикалах. Ввиду устойчивости силоксановых связей к гомолитическому расщеплению и возможности побочных реакций в органическом обрамлении (см. стр. 463) радикальные инициаторы не применяются. [c.472]

    Непосредственное использование потенциалов взаимодейст-ВИЯ для решения задачи об ослаблении межатомных связей в твердом теле в присутствии инородных атомов в настоящее-время за руднительно. Наиболее реалистическим микромасштабным подходом пока остается разработка таких полуко-личественных схем взаимодействия напряженных связей с молекулами среды, которые можно проверить, варьируя химическую природу жидкой и твердой фаз при прочих равных условиях. Так, в работах [273, 274J сопоставлено действие различных сред (вода, гидразин, формамид и др.) па прочность керамических материалов и показано, что молекулы, облегчающие разрыв силоксановых связей Si—О, должны обладать-изолированной электронной парой и в то же время служить-донором протонов. [c.93]

    Высокая стойкость полисилоксанов к действию окислителей при высоких температурах объясняется прочностью силоксановых связей. Под влиянием повышенной температуры и кислорода происходит не разрыв макромолекулярных цепей, а отщепление углеводородных радикалов с образованием летучих низкомолекулярных органических веществ и соединение образовавшихся макрорадикалов. Укрупнение макромолекул затрудняет дальнейшую диффузию кислорода в глубь полимера, вследствие чего процесс деструкции замедляется. Термическая стойкость полиорга-носилокоаиов убывает в зависимости от характера замещающих радикалов, связанных с атомами кремния, в следующем порядке  [c.485]

    Классификация. Органические производные непереходных элементов. Характер связи С—Э. Краткая характеристика элементорганических соединений по группам периодической системы элементов. Реактив Гриньяра. Алюминийорганические oeдинe ия, Триэтилалюминий. Катализаторы Циглера—Натта. Фосфорорганйческие соединения. Перегруппировка А. Е. Арбузова. Кре,мнийорганические соединения. Сходство и различия между углеродом и кремнием. Классификация кремнийорганических соединений. Получение кремнийорганических мономеров. Силоксановая связь. Кремнийорганические полимеры. Гидрофобизаторы. Использование в строительстве. [c.170]

    Кроме этого, сама силоксановая связь отличается особенностями электронного строения. Орбитали кремния под влиянием заместителей могут становиться более сжатыми или более диффузными, в зависимости от знака и величины эффективного заряда атома. Это сказывается на электронном распределении и участии валентных Зз-, Зр- и Зй-орбиталей <ремния в электронной структуре и свойствах силоксановой группировки. В зависимости от природы заместителя у атома кремния и структуры соединения валентный угол мостикового атома кислорода в группировке 81-О-81 изменяется от 86° до 180°. [c.595]


    Кремнийорганические полимеры представляют собой особую группу полимеров, совмещающих многие ценные свойства, присущие некоторым неорганическим и органическим веществам. Для них характерна кремнийкислородная (силоксановая) связь  [c.204]

    На частично дегидроксилированной поверхности кремнезема молекулярная адсорбция пара воды значительно меньше, поскольку силоксановая часть поверхности гидрофобна, как в случае силикалита. Этому соответствуют более низкие значения Г и Однако в отличие от силикалита силоксановые связи на дегидроксилированной поверхности аморфных кремнеземов сильно напряжены [см. схемы реакций (3.1) и (3.2)], поэтому, осо.бенно при больших давлениях пара, молекулярная адсорбция воды переходит в химическую реакцию регидроксилирования поверхности кремнезема [обратную приведенным в схемах (3.1) и (3.2)]. В результате изотерма адсорбции воды становится необратимой. В ИК спектрах (рис. 3.13) это проявляется в некотором увеличении интенсивности [c.65]

    Появление связанных силанольных групп при раскрытии напряженных силоксановых связей по обратным реакциям (3.1) и (3.2), образовавшихся на месте удаленных свободных силанольных групп поверхности, обусловлено некоторой переориентацией поверхностных кремнийкислород-ных тетраэдров, происходяшей при.высоких температурах дегидроксилирования в результате конформационных превращений в к ремнийкислородных цепях и циклах. Таким образом, при ре-гидроксилировании в парах воды напряженных силоксановых связей (после предварительной вакуумной обработки кремнезема при 700—1100° С) образуются как свободные, так и связанные поверхностные силанольные группы. [c.66]

    Для них характерны связи 51—О, 51—С и С—Н. Наиболее прочна силоксановая связь 51—О. В силу электроотрицательности кислорода она весьма полярна (37% от ионной). Энергия связи 51—О 89 ккал1моль. Связь 81—С в некоторой степени также поляризована из-за большей электроотрицательности углерода в сравнении с кремнием и из-за индуктивного влияния 51—0-связи. Поэтому у кремнийорганических полимеров устойчивость органических радикалов к термоокислительной деструкции выше, чем у полимерных углеводородов. [c.82]

    При термоокислительном воздействии на кремнийорганиче-ские полимеры разрывается связь углерода с кремнием как менее прочная. В результате органический радикал от кремния отрывается полностью, а основная цепь сохраняет структуру. Дальнейшее окисление идет так, что между атомами углерода со свободными валентностями образуется дополнительная силоксановая связь в виде кислородного мостика, соединяющего основные цепи макромолекул. Увеличивается молекулярный вес полимера, повышается содержание связанного кислорода, образуются тугоплавкие продукты, приближающиеся по мере старения к структуре кварца. Возникшие в результате окисленйя кислородные мостики задерживают проникновение кислорода к незатронутым [c.82]

    В кремнийорганических полимерах проявляется преимущество силоксановой связи — ее высокая термическая устойчивость. Вместе с тем углеводородные радикалы придают полимерам гибкость, эластичность и способность растворяться в органических жидкостях. Чем больше число органических радикалов, приходящихся на один атом кремния, или чем меньше число поперечных связей, тем выше эластичность полимера. Наиболее эластичны линейные кремнийорганические полимеры, у которых на один атом кремния приходятся два органических радикала. В этом случае полимерные цепи связаны между собой только межмолекулярными силами, дающими возможность цепям, в отличие от химических связей, перемещаться друг относительно друга. Поперечные химические связи повьпиают твердоегь и прочность кремнийорганических полимерных веществ. Если число поперечных связей невелико и расположены они редко, то соединения более прочны, чем линейные, и в то же время сохраняют высокую гибкость и эластичность, свойственную резинам. Когда образуются пространственные структуры с частыми поперечными связями, получаются прочные твердые нерастворимые вещества, обладающие различной степенью эластичности в зависимости от числа поперечных связей. [c.266]

    Связь Si—О—Si называется силоксановой связью, В качестве боковых заместителей могут быть. тюбые алкильные или арильные радикалы. [c.53]

    ЦиКоТическая структура полиалюмосилоксапов доказана методом инфракрасной спектроскопии и подтверждается способностью таких циклических полимеров полимеризоваться под влиянием ка талнзаторов с раскрытием силоксановых связей в циклических молекулах. [c.54]

    Большой практический интерес представляет исследование стойкости кремнийорганических немодифицированных связок в условиях высоких давлений и температур. В условиях реакции вода (водяной пар), выступающая в качестве разрушающего реагента, вызывает перераспределение силоксановых связей. Химический анализ продуктов разложения показал, что гидротермальная деструкция полидиме-тилфенилсилоксанов протекает, вероятно, с разрывом не только связи 51—С, но и связи 51—О. В гидротермальных условиях можно предположить следующий механизм реакции  [c.146]

    Хроматография на силикагеле. Силикагель является продуктом полимеризации ортокремниевой кислоты (Н45104). Он выпускается рядом фирм в виде зерен различной величины. Адсорбционные свойства силикагеля обусловлены присутствием на поверхности зерен гидроксильных групп, которые за счет водородных связей взаимодействуют друг с другом и водой. Гидратированный силикагель мало активен как адсорбент. При нагревании от 50 до 150 С происходит дегидратация, приводящая к значительному увеличению адсорбционной способности силикагеля. Нагревание при температуре свыше 150°С способствует образованию силоксановых связей (Si—О—51), что снижает адсорбционную способность силикагеля. Такой силикагель уже нельзя реактивировать путем присоединения воды. Лучший способ избежать образования силоксановых групп — активация силикагеля нагреванием в вакууме при температуре 50°С. [c.69]


Библиография для Силоксановая связь: [c.498]    [c.274]   
Смотреть страницы где упоминается термин Силоксановая связь: [c.463]    [c.467]    [c.473]    [c.305]    [c.19]    [c.23]    [c.54]    [c.56]    [c.64]    [c.268]    [c.31]    [c.83]    [c.482]    [c.415]    [c.513]   
Физикохимия полимеров (1968) -- [ c.53 ]

Технология пластических масс 1963 (1963) -- [ c.339 ]

Технология пластических масс Издание 2 (1974) -- [ c.297 ]

Органическая химия (1976) -- [ c.281 ]

Основы химии высокомолекулярных соединений (1961) -- [ c.339 ]

Химическая стойкость полимеров в агрессивных средах (1979) -- [ c.63 ]

Высокомолекулярные соединения Издание 2 (1971) -- [ c.234 , c.260 ]




ПОИСК







© 2025 chem21.info Реклама на сайте