Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Релаксационное торможение движения ионов в растворе

    Вскоре после открытия Вина Дебай и Фалькенгаген предсказали существование еще одного эффекта. Сущность его заключается в увеличении электропроводности растворов электролитов с частотой приложенного электрического поля. Этот эффект называется эффектом Дебая — Фалькенгагена или дисперсией электропроводности. Возможность его появления также обусловлена существованием ионной атмосферы. Действительно, при высоких частотах ионы в растворе не перемещаются, а лишь совершают колебательные движения в направлении, параллельном направлению поля. Центральный ион при этом не успевает выйти за пределы ионной атмосферы, которая также не успевает заметно разрушиться, а в каждый данный момент только колеблется в направлении, обратном движению центрального иона. В этом случае силы, связанные с разрушением и с созданием ионной атмосферы, т. е. релаксационные тормозящие силы, проявляются в меньшей степени и электропроводность раствора растет. При высоких частотах она достигает значения, которое отличается от электропроводности при бесконечном разведении на величину Яь поскольку релаксационный эффект исчезнет Яп = 0, а электрофоретическое торможение сохранится. В этом случае [c.128]


    Согласно теории сильных электролитов Дебая — Хюккеля, каждый ион полностью диссоциированного электролита окружен ионами, создающими поле противоположного знака. Такое распределение ионов в пространстве называется ионной атмосферой. При наложении внешнего поля центральный ион и ионная атмосфера, как обладающие зарядами, одинаковыми по величине, но обратными по знаку, движутся в противоположные направления. Силы меж-ионного взаимодействия вызывают торможения, растущие с увеличением концентрации, и, следовательно, уменьшающие эквивалентную электрическую проводимость. Движение ионной атмосферы в сторону, противоположную центральному иону, вызывает электрофоретическое торможение, обусловленное движением сольватированного иона против потока сольватированных ионов ионной атмосферы. Второй эффект торможения обусловлен нарушением симметрии расположения ионной атмосферы вокруг центрального иона при его движении под действием поля. Движение приводит к разрушению ионной атмосферы позади иона и образование ее на новом месте. Для этого требуется время релаксации, и потому позади движущегося иона всегда находится некоторый избыток заряда противоположного знака, тормозящего его движение. Это торможение называют релаксационным. На скорость движения иона в растворе влияет вязкость среды, создавая дополнительный эффект трения, который учитывается уравнением Стокса /т = 6ят]гу, где /т — спла трения т) — вязкость растворителя г — радиус иона V — скорость движения иона. [c.272]

    Эффект релаксационного торможения. Согласно электростатической теории растворов сильных электролитов ионная атмосфера обладает центральной симметрией. При движении иона в электрическом поле симметрия ионной атмосферы нарушается. Это связано с тем, что перемещение иона сопровождается разрушением ионной атмосферы в одном положении иона и формированием ее в другом, новом. Этот процесс происходит с конечной скоростью в течение некоторого времени, которое называется временем релаксации. Вследствие этого ионная атмосфера теряет центральную симметрию, и позади движущегося иона всегда будет некоторый избыток заряда противоположного знака. Возникающие при этом силы электрического притяжения будут тормозить движение иона. Таким образом, сила, действующая на ионы и определяющая скорость их движения в электрическом поле, а следовательно, электрическую проводимость раствора, будет  [c.461]


    Ионы при этом рассматриваются как точечные заряды, а растворитель - как континуум, характеризующийся определенными параметрами вязкостью и диэлектрической проницаемостью. В отсутствие внешнего поля ионная атмосфера симметрично распределена вокруг данного иона, причем максимум плотности ее заряда приходится на расстояние 1,/к. Можно представить, что под действием внешнего поля ион перемещается в одном направлении, а ионная атмосфера - в другом. Результирующее "вязкое" торможение центрального иона уменьшает скорость его движения через раствор. Этот эффект носит название электрофоретического. Перемещение центрального иона в электрическом поле нарушает симметрию ионной атмосферы, что вызывает появление силы притяжения, стремящейся вернуть ион в его исходное положение. Это уменьшает внешнее электрическое поле вблизи движущегося иона и вызывает релаксационный эффект. [c.14]

    Второй эффект относится к измерению сопротивления раствора электролита постоянным током высокого напряжения. В поле очень высокой напряженности ионы могут приобретать столь большую скорость, что ионная атмосфера не будет успевать образовываться и ионы будут двигаться как бы в голом виде. В этих условиях, естественно, исчезнет не только релаксационное, но и электрофоретическое торможение и скорость движения иона станет равной Шюо. Возрастание электрической проводимости сильных электролитов в поле очень высокой напряженности до значения, отвечающего бесконечному разведению, называется, по имени первооткрывателя этого явления, первым эффектом Вина. Экспериментальное обнаружение эффекта Вина весьма непросто, так как при таких напряженностях поля электролит легко разогревается, что увеличивает его электрическую проводимость. Поэтому приходится пользоваться кратковременными импульсами тока, длящимися всего несколько миллионных долей секунды. Результаты, полученные Вином для некоторых солей, представлены на рис. 5.14. [c.120]

    При перемещении центрального иона проходит какое-то время, пока старая ионная атмосфера разрушается и на новом месте создается новая. Поэтому позади иона при его движении будет всегда находиться некоторый избыток заряда противоположного знака, и возникающие здесь электрические силы притяжения будут тормозить движение иона. Этот эффект торможения называется релаксационным. Если изменение эквивалентной электропроводности, связанное с релаксационным эффектом, обозначить через Хц, то уменьшение электропроводности при концентрации с, по сравнению с нулевой концентрацией (идеальный раствор), будет выражаться уравнением [c.115]

    Ионная атмосфера рассеивается и возникает в новом месте не мгновенно. Поэтому при движении иона в электрическом поле ионная атмосфера перед ним не успевает полностью сформироваться, в плотность заряда здесь несколько понижена. За ионом же она повышена, так как ионная атмосфера еще полностью не рассеялась. Следовательно, каждый движущийся ион оставляет позади себя избыток противоионов, уменьшающих скорость его движения. Это дополнительное торможение называется релаксационным. Очевидно, оба вида торможения будут проявлять себя тем сильнее, чем больше концентрация раствора. [c.205]

    На подвижность каждого иона ионная атмосфера влияет двояко. Во-первых, при движении иона в растворе необходимо какое-то время, чтобы разрушилась ионная атмосфера на прежнем месте и сформировалась ионная атмосфера на новом месте. Поэтому позади иона всегда находится некоторый избыток заряда противоположного знака, и возникающие электрические силы притяжения тормозят его движение. Такой эффект торможения называется релаксационным . Другой тормозящий эффект называется электрофоретическим . Движущиеся ионы передают растворителю некоторое количество движения. При этом каждый ион движется в направлении, противоположном направлению движения окружающего его избытка ионов противоположного знака. Таким образом, поскольку каждый ион движется как бы против течения , испытываемая им сила вязкого трения оказывается большей по сравнению со случаем покоящегося растворителя. Оба эффекта торможения зависят от плотности ионной атмосферы и возрастают пропорционально квадратному корню из концентрации. [c.203]

    НОСТИ растворов с многовалентными ионами будет иметь место при частотах V = более высоких, чем для одновалентных ионов. Для проверки справедливости этого качественного заключения, обратимся к рис. 46, на котором по оси ординат отложена величина релаксационного торможения электропроводности Л при данной частоте колебаний V, выраженная в долях от нормальной величины релаксационного торможения при прямолинейном движении иона. Из рис. 46 можно заключить, что приведенный выше вывод о значении валентности ионов в явлениях дисперсии электропроводности растворов оказался справедливым. [c.151]


    Электропроводность возрастает и в том случае, если в растворе создается весьма высокая напряженность поля, при которой скорости движения ионов становятся очень большими. В этих условиях ион движется настолько быстро, что на пути его не успевает создаваться ионная атмосфера. Релаксационное торможение уменьшается и при достаточно большой напряженности вовсе исчезает. В таком случае ноны испытывают только торможение, обусловленное самим растворителем. Отсутствие ионной атмосферы резко уменьшает и электрофоретический эффект. В таких условиях движение иона подобно движению его в бесконечно разбавленном растворе, когда электростатическое взаимодействие между ионами практически отсутствует. Электропроводность при этом увеличивается и стремится к некоторому предельному значению, отвечающему Я . [c.131]

    Теория электропроводности растворов сильных электролитов была разработана П. Дебаем и Л. Онзагером. В этой теории, помимо силы торможения иона, возникающей при его движении в вязкой среде, учитываются две дополнительные силы тормо-лсения, вызываемые наличием ионной атмосферы. Эти две силы связаны с двумя эффектами электрофоретическим и релаксационным. [c.174]

Рис. (1.4. Влияние ионной атмосферы на движение носителей в растворах сильных электролитов а — электрофоретическое торможение б — релаксационное торможение Рис. (1.4. <a href="/info/263279">Влияние ионной атмосферы</a> на движение носителей в <a href="/info/8350">растворах сильных</a> электролитов а — <a href="/info/4032">электрофоретическое торможение</a> б — релаксационное торможение
    Напротив, позади иона она повышена, так как прежняя структура не успевает полностью распасться. Ясно, что каждый движущийся ион оставляет за собой некоторый избыток противоположных зарядов, задерживающих его движение. Это вызывает дополнительное, так называемое релаксационное, или асимметрическое, торможение (рис. 46). Таким образом, эквивалентная электропроводность X раствора сильного электролита при данной концентрации равна электропроводности X, при бесконечном разведении,. [c.143]

    Теоретические вопросы интерпретации концентрационной зависимости электропроводности разбавленных растворов электролитов были рассмотрены в работах Онзагера. Теория Онзагера построена на гипотезе о том, что предельная скорость иона V обусловлена действием трех сил 1) внешней силы еЕ 2) средних межионных сил Рр, вызывающих так называемый релаксационный эффект торможения 3) силы электрофоретического торможения Р , связанной с тем, что движение центрального иона происходит не в неподвижной среде, а в среде, перемещающейся ему навстречу, [c.93]

    На основе электростатической теории сильных электролитов Дебай, Гюккель и Онзагер получили выражение для эквивалентной электропроводности предельно разбавленных растворов сильных электролитов. Изменение эквивалентной эле.чтропроводности растворов сильных электролитов с концентрацией электролита объясняется торможением движения ионов в электрическом поле из-за их электростатического взаимодействия. С увеличением концентрации раствора ионы сближаются и электростатическое взаимодействие между ними возрастает. При этом учитываются два эффекта, вызываюш,их электростатическое взаимное торможение ионов электрофоретический и релаксационный эффекты. [c.261]

    Теория сильных электролитов показывает, что образование ионных атмосфер ведет к замедлению движения ионов. Механизм замедляющего влияния ионных атмосфер двоякий. С одной стороны, имеет место электрофоретический механизм торможения, заключающийся в появлении встречного движения ионной атмосферы. Величину снижения электропроводности, вызванного электрофоретическим торможением, обозначим Ла. Кроме того, существует релаксационный механизм торможения движения иона. Замедленность процесса рассеяния ионной атмосферы ведет к тому, что при движении иона центр его ионной атмосферы как бы отстает от него. Противоположность зарядов иона и его ионной атмосферы ведет к тому, что отстающая от иона атмосфера притягивает его к себе, т. е. тормозит двигающийся ион. Релаксационное торможение ведет к понижению электропроводности. Обозначим понил<ение электропроводности, вызываемое релаксационным торможением, через Если величину эквивалентной электропроводности при бесконечном разведении обозначить через Аоо, то электропроводность раствора с конечной концентрацией Л может быть вычислена по уравнению [c.147]

    Природа торможения объясняется существованием ионных атмосфер. При движении каждого центрального иона к соответствующему электроду возникает так называемое катафоре-тическое тормоэюение, которое вызывается одновременным противоположно направленным движением ионной атмосферы. Ионная атмосфера рассеивается и возникает в новом месте не мгновенно. Поэтому при движении иона в электрическом поле ионная атмосфера перед ним не успевает полностью сформироваться, и плотность заряда здесь несколько понижена. За ионом же она повышена, так как ионная атмосфера еще полностью не рассеялась. Следовательно, каждый движущийся ион оставляет позади себя избыток противоионов, уменьшающих скорость его движения. Это дополнительное торможение называется релаксационным. Очевидно, оба вида торможения будут проявлять себя тем сильнее, чем больше концентрация раствора. [c.224]

    Релаксационный эффект торможения обусловлен конечным временем разрушения (релаксации) ионной атмосферы. В результате этого центр ионной атмосферы в неравновесных условиях оказывается смещенным на некоторое расстояние от положения движущегося центрального иона. Таким образом, возникает э лектр(х татическая возвращающая сила, которая одновременно замедляет движение и центрального иона, и ионной атмосферы. В результате, как вытекает из теории Дебая Гюккеля — Онзагера, в растворе 1,1-валентного электролита [c.88]


Смотреть страницы где упоминается термин Релаксационное торможение движения ионов в растворе: [c.146]    [c.262]    [c.191]    [c.160]    [c.123]    [c.127]    [c.116]   
Теоретическая электрохимия (1959) -- [ c.119 ]

Теоретическая электрохимия Издание 3 (1970) -- [ c.119 ]




ПОИСК





Смотрите так же термины и статьи:

Движение ионов

Движение ионов в растворе

Раствор ионный

Торможение

Торможение ионов

Торможение ионов релаксационное



© 2025 chem21.info Реклама на сайте