Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Электропроводность буфера

    Так как повышение температуры увеличивает электропроводность буфера в капилляре, ток при постоянном напряжении в начале анализа изменяется до тех пор, пока не образуется стабильный температурный градиент. В этом состоянии основное джоулево тепло отводится через стенки капилляра. При неэффективном охлаждении температура буфера повышается, и поэтому ток увеличивается непропорционально приложенному напряжению. При этом перестает выполняться закон Ома. [c.18]


    В целом действием температурных эффектов можно пренебречь при работе в области выполнения закона Ома. Максимальное необходимое напряжение зависит, таким образом, от диаметра капилляра, электропроводности буфера и эффективности охлаждения. [c.18]

    Уменьшение электропроводности буфера устанавливает, однако, некоторые ограничения. Если между электропроводностью в буфере и в зоне пробы существует большое различие, то локальное нарушение электрического поля приводит к искажениям зон и, вследствие этого, к уменьшению эффективности разделения. Если электропроводность внутри зоны пробы больше, чем в несущем электролите, то уменьшение сопротивления приводит к снижению напряженности поля. Из-за этого молекулы пробы в зоне концентрационного максимума перемещаются медленнее, чем на краях. Это приводит к сильному искажению зон с медленным подъемом и быстрым падением в них концентрации веществ. В другом случае возникает пик с большим "хвостом". Симметричный пик получается только, если электропроводности в зоне пробы и в буфере одинаковы. [c.19]

    Электропроводность буфера в зонном электрофорезе должна быть одинаковой на всем участке разделения. Только этим обеспечивается то, что напряжение на участке разделения падает равномерно и скачков напряженности поля не возникает. [c.19]

    Появление градиента напряженности электрического поля в зоне перемещения молекул пробы определяется ионной силой (или концентрацией) буфера. Если электропроводностью зоны пробы нельзя пренебречь по сравнению с электропроводностью буфера, это приводит к уширению полос. Эффект усиливается с ростом различия в подвижностях ионов пробы и буфера. [c.20]

    Из-за высокой концентрации добавок электропроводность буфера становится такой большой, что для разделения белков можно применять поле только небольшой напряженности, что ведет к удлинению времени анализа. [c.22]

    В основе взаимодействия белков со стенкой лежит в основном механизм катионного обмена. Это возможно, поскольку и в случае отрицательного полного заряда молекулы (особенно при основных pH) всегда имеются в наличии катионные группы, например аргинин-радикалы в цепочках полипептидов. Поэтому путем добавления солей щелочных металлов (например сульфата калия) к буферу, как и в случае ионообменной хроматографии, достигается конкуренция кулоновскому притяжению и вызванное этим притяжением взаимодействие белок - стенка явно уменьшается. Следуя этой концепции, можно для стандартных белков в широкой области р1 (р1 5-11) достичь эффективности 50000-100000 тарелок на метр. И в этом случае недостатком является сравнительно высокая электропроводность буфера (эффективное охлаждение ) которая вынуждает использовать поля низкого напряжения (5 кВ) и длинные капилляры с маленьким внутренним диаметром (25 мкм). Кроме того, большие ионные силы уменьшают как ЭОП, так и -потенциал пробы, что вместе с вышеназванными факторами приводит к длительным временам анализа. [c.67]


    Неблагоприятную адсорбцию белков на поверхности капилляра можно уменьшить также добавками низших полиаминов, например, 1,3-ДАП. При этом получают высокую эффективность, однако из-за большой собственной электропроводности буфера следует использовать электрические поля низкой напряженности. Действие буферных добавок, вероятно, частично объясняется необратимой адсорбцией на стенках капилляра. Поэтому одновременно со снижением адсорбции пробы происходит резкое уменьшение электроосмоса. В качестве примера на рис. 60 показано разделение стандартных белков. [c.69]

    Несмотря на малое количество фракционируемого белка, от рабочего буфера требуется существенная емкость, так как при образовании зоны локальная концентрация белка может оказаться значительной. Поэтому приходится использовать буферы с концентрацией 0,1—0,2 М и более. При этом следует учитывать, насколько близко к границе буферной области лежит рабочее значение pH. Если такое приближение к границе необходимо, то для обеспечения достаточной буферной емкости моляр-ность буфера приходится еще увеличивать. Вопрос об электропроводности буферов рассмотрен ниже. [c.38]

    Высокая электропроводность буфера нежелательна, поскольку ограничивает возможность повышения напряженности электрического поля в геле из-за увеличения тока и связанного с этим выделения тепла. Между тем, именно напряженность поля обеспечивает всегда желательное ускорение миграции белков. [c.42]

    Этот принцип проще всего понять, отталкиваясь от проведенного в предыдущей книге подробного рассмотрения процессов ступенчатого электрофореза [Остерман, 1981]. Вспомним поведение используемых там двух сильно отличающихся по электрофоретической подвижности анионов — хлора и глицина. Хлор в ходе электрофореза отходит к аноду, и вслед за ним из катодного резервуара движется отрицательно заряженный при щелочном pH ион глицина. Значение pH задается Трис-буфе-ром. В любой ситуации, при любом pH ион глицина следует вплотную за ионом хлора. В формирующем геле при pH 6,8, когда электрофоретическая подвижность глицина мала, происходит перераспределение напряженности электрического поля таким образом, чтобы обеспечить миграцию ионов глицина с такой же скоростью, как и ионов хлора. Разрыва между ними быть не может — иначе бы не было тока. Перераспределение напряженности поля вдоль столбика геля при ступенчатом электрофорезе используется длй сужения исходной полосы сме- си белков. Существенно, что концентрация белков при этом настолько мала, что вклад их собственной ионной проводимости незначителен по сравнению с электропроводностью буфера. Белки мигрируют в электрическом поле, не зависящем от их присутствия. Ион глицина обгоняет самый быстрый из белков, и собственно фракционирование белковой смеси происходит в Трис-глициновом бу( ре с pH 8,8 — в поле неизменной напряженности. [c.75]

    Уже указывалось, что для предотвращения агрегации белков в рабочий буфер геля нередко вводят мочевину в концентрации от 2 до 8 М. Ее, разумеется, добавляют и в исходный белковый препарат. В электродные буферы вносить мочевину не нужно, так как, не будучи заряженной, она не мигрирует в геле, а следовательно, и не нуждается в пополнении. На электропроводности буфера присутствие мочевины практически не сказьшается. Однако под влиянием нового окружения могут изменяться отдельных групп и суммарный заряд белка. Это может заметно повлиять на конфигурацию, а следовательно, и на подвижность белков. [c.50]

    Из изложенного ясно, что pH буфера в этом варианте электрофореза не играет существенной роли, так как заряд белка определяется его комплекс ированием с ДДС-Na. Обьино работают с нейтральными буферами. По традиции, идущей еще от пионерской работы Вебера и Осборн [Weber, Osborn, 1969], часто используют 0,1 М Na-фосфатный буфер, pH 7,1. Его концентрация обусловлена только желанием обеспечить 10-кратное различие в электропроводностях буферов геля и препарата. В качестве последнего берут 0,01 MNa-фосфат, pH. 7,1. Как уже указьшалось, такое различие обеспечивает концентрирование исходной полосы при переходе белков из буфера препарата в гель. Однако ввиду большой электропроводности Na-фосфатного буфера напряженность поля приходится ограничивать значением 5В/см, что замедляет процесс разделения, поэтому вместе Na-фосфат-ного имеет смысл использовать другой, менее проводящий буфер, например имидазолфосфатный, pH 7. Молярность рабочего буфера можно снизить до 0,05 М, сохранив для буфера препарата концентрацию 0,01 М. Это позволит значительно увеличить напряженность поля и сократить продолжительность электрофореза. [c.61]

    Поскольку элюция ряда высокомолекулярных белков, а также плохо растворимых мембранных белков из геля после ДДС-Ма -электрофореза часто оказывается затруднена из-за их преьрпитации в геле под действием метанола, для улучшения переноса используют два приема либо из состава фера для переноса исключается метанол, либо в буфер вводится ДДС-Ма или другие детергенты. Исключение из буфера метанола позволяет улучшить перенос, но в то же время ухудшает связывание белков с нитроцеллюлозной мембраной. Введение же в буфер ДДС-Ма ухудшает связывание бежов с нитроцеллюлозной мембраной и увеличивает электропроводность буфера, что вызывает увеличение силы тока и тепловыделения в процессе переноса. В то же время ДДС-Ма не оказывает влияния на связывание белков с РУВР-мембранами и положительно заряженными мембранами из нейлона. [c.65]



Смотреть страницы где упоминается термин Электропроводность буфера: [c.584]    [c.17]    [c.18]    [c.17]    [c.18]    [c.280]    [c.61]    [c.140]   
Электрофорез и ультрацентрифугирование (1981) -- [ c.39 , c.41 ]




ПОИСК







© 2025 chem21.info Реклама на сайте