Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Электрофорез зонный

    Он выполняется следующим образом. На середину полоски плотной, гомогенной фильтровальной (хроматографической) бумаги, пропитанной буферным раствором с определенным значением pH, наносят каплю исследуемого коллоидного раствора. Затем на полоску бумаги накладывают разность потенциалов. Под влиянием образующегося электрического поля отдельные компоненты, содержащиеся в капле, обладающие разными электрофоретическими подвижностями, передвигаются по полоске с различными скоростями. Через некоторое время компоненты распределяются на бумаге в виде стольких зон, различно удаленных от исходной точки, сколько компонентов содержалось в растворе. Полоску высушивают и прогревают для денатурации и фиксации находящихся на ней белков и после этого окрашивают подходящими красителями. В результате проявляется распределение компонентов по длине полоски. Роль бумаги в этом методе сводится к устранению диффузионного и конвекционного перемешивания белков при электрофорезе. [c.210]


    Схема установки для капиллярного зонного электрофореза не требует особых пояснений (рис. 6.7). Капилляр, в котором перемещаются зоны компонентов образца, помещают между двумя сосудами с раствором, проводящим электрический ток (обычно применяют буферные растворы), и устанавливают между электродами разность потенциалов Ея 20 30 кВ. [c.227]

    Важное преимущество электрофореза на бумаге перед методом подвижной границы связано с возможностью полного разделения компонентов путем элюирования соответствующих зон. С помощью комбинирования сте-кания раствора по наклонной фильтровальной бумаге с электрофоретическим отклонением создан метод, позволяющий беспрепятственно разделять компоненты. [c.158]

    Термодинамические методы основаны на переходах вещества из одной фазы в другую, при этом химический потенциал вещества понижается [2, с. 16]. К этому классу методов очистки относятся перекристаллизация, перегонка (дистилляция), возгонка, хроматография, адсорбция с последующей десорбцией, электролиз, электрофорез, термодиффузия и многие другие. К этому же классу методов можно отнести и отделение одного вещества от другого при помощи химической реакции. Если реакции подвергается нужное вещество, то после отвода его из зоны реакции в виде некоторого нового соединения последнее разлагают для получения исходного вещества. В ряде случаев четкой границы между двумя классами методов провести не удается. [c.99]

    Электрофорез в растворе пока имеет весьма ограниченное применение, поскольку разделяемые по ходу электрофореза зоны, во-первых, подвергаются диффузионному размыванию, а во-вторых, что более существенно, размываются конвекционными токами, возникающими в результате незначительных неоднородностей температуры в системе, при ничтожных механических воздействиях и т.п. В настоящее время, по-видимому, начинается второе рождение этого метода в связи с возможностью проведения электрофореза в условиях невесомости на орбитальных космических станциях. [c.241]

    Положение резко изменилось после появления метода зонного электрофореза. Зонный электрофорез основан на электромиграции ионов не в свободном растворе, как в случае фронтального метода, а в растворе, пропитывающем пористую среду, называемую также пори- [c.25]

    В ходе электрофореза зоны растворенных макромолекул остаются невидимыми. Для наблюдения за процессом в исходный препарат добавляют краситель, молекулы которого несут электрический заряд того же знака, что и фракционируемые макромолекулы, но не взаимодействуют с ними. Краситель тоже передвигается в электрическом поле, но уже в виде окрашенной зоны. Его подбирают таким образом, чтобы скорость миграции наиболее подвижных макромолекул была несколько ниже, чем у молекул красителя. Когда окрашенная зона доходит до конца трубки, электрофорез прекращают. [c.5]


    Высокая эффективность разделения при относительно мапом объеме анализируемого раствора и простота аппаратуры явились причинами того, что капиллярный зонный электрофорез широко применяется в настоящее время для определения биологически активных ветцеств, в том числе белков, токсинов, ядохимикатов и продуктов их метаболизма, в растительных и животных тканях [117,1181. Дк разделения незаряженных молекул в раствор вводят соединения, которые образуют комплексы с определяемыми веществами. Наиболее часто в этих целях используют циклодекстрины П19 . Последние выступают в роли локомотива , который увлекает за собой нейтральные молекулы щзи движении внутри капилляра. В частности, таким способом удалось осуществить выделение некоторых ПАУ и ПХБ из биологических матриц [120,121). В [c.228]

    Путем анализа методики получения золя и химизма реакции определяют заряд коллоидных частиц золя. Доказывают правильность определения заряда методом электрофореза. Для этого в V-образную трубку помещают золь и в оба колена трубки вводят электроды. Присоединяют электроды к источнику постоянного тока. Через 5—10 мин ток отключают. У электрода, заряженного одноименно с коллоидными частицами, должна наблюдаться зона просветления. [c.194]

    Задачи работы приготовить смесь алкалоидов провести электрофорез обнаружить и идентифицировать зоны количественно определить компоненты. [c.231]

    Скорость движения частицы зависит от ее заряда, напряженности электрического поля, вязкости среды, ионной силы раствора. Если электрофорезу подвергается слабый электролит, то он перемещается в виде сплошной зоны, скорость перемещения которой пропорциональна Класс электролита. Благодаря этому возможно разделение электролитов, если отношение их констант диссоциации <%  [c.231]

    Элементы теории миграции заряженных частиц при свободном и зонном электрофорезе. Допустим, что ионы и коллоидные частицы находятся под действием постоянного однородного электрического поля с напряженностью Е (В/м). Заряженные частицы будут двигаться в электрическом поле к противоположно заряженному электроду. Скорость движения для частицы сферической формы в бесконечно разбавленном растворе электролита можно выразить формулой [c.362]

    Зонный электрофорез на ацетатцеллюлозной мембране. Мембрана ацетатцеллюлозы как носитель для электрофореза имеет ряд преимуществ по сравнению с бумагой однородность и строго определенный размер пор, пониженная адсорбционная способность, что исклю- [c.363]

    Электрофорез применяют для очистки различных фармацевтических препаратов. В Фармакопее СССР (изд. 10) предусмотрено установление степени чистоты по электрофоретической однородности ряда антибиотиков, витаминов и других веществ. Электрофорез (ионофорез) является одним из методов введения лечебных препаратов в организм человека. Широкое применение как аналитический и препаративный метод разделения и выделения различных лекарственных веществ и биологически активных соединений нашел электрофорез на бумаге, а также в агаровом или крахмальном геле. Эти методы применяют также при диагностике ряда заболеваний путем сравнения фракционного состава (по числу и интенсивности зон на электрофореграмме) нормальных и патологических биологических жидкостей. [c.408]

    Общий принцип разделения выглядит весьма просто. На раствор электролита наносится в виде слоя (зоны) раствор, содержащий разделяемую смесь. После подачи напряжения каждый компонент смеси начинает перемещаться в соответствии со своей подвижностью. Через некоторое время каждый из компонентов, имеющий подвижность, достаточно сильно отличающуюся от таковой для других компонентов, образует свою зону на расстоянии UiS t (i —время электрофореза) от расположения исходной зоны. Следует, однако, иметь в виду, что само создание зоны приводит к возникновению скачка концентрации каждого из разделяемых компонентов на границе разделяемая смесь —исходный электролит. Поэтому сразу же начинается диффузия компонентов в свободный от них электролит. Диффузия идет на протяжении всего процесса разделения, приводя к размыванию зон. Поэтому профиль концентраций разделяемых компонентов вдоль ячейки, в которой проводится электрофорез, постепенно сглаживается, как это изображено на 330 [c.330]

    НОМ порошке, порошке поливинилхлорида и т. д., и главным образом на целлюлозе. Электрофоретический метод разделения имеет особое значение для разделения коллоидов и аминокислот, так как заряд частиц этих соединений зависит от значения pH среды. Поэтому значение pH раствора (изо-электрическая точка) оказывает большое влияние на направление движения ионов в растворе. Процесс электрофореза проводят часто в присутствии буферных растворов. Согласно уравнению (7.1.29), состав раствора оказывает большое влияние на скорость движения частиц в растворе. Движению частиц в электрическом поле препятствует явление диффузии. Влияние диффузии обратно пропорционально размерам частиц и силе поля. Для разделения ионов больших размеров можно применять электрофорез при низком напряжении, для разделения частиц небольших размеров следует работать при более высоких напряжениях. Электрофорез на носителе по технике выполнения проще, чем обычный электрофорез. При этом вещества в соответствии со скоростями их движения в электрическом поле фракционно осаждаются на носителе. Используя сорбционное действие носителя, можно замедлить движение частиц, что приведет к расширению зон фракционирования. Под действием выделяемого током тепла, особенно при работе с высокими напряжениями, происходит испарение растворителя, что затрудняет процесс разделения. Важным фактором является удаление перед разделением больших количеств электролитов, например, в процессе диализа. [c.387]


    В последнее время большое внимание уделяется специфическим белкам — иммуноглобулинам, которым придается важное практическое значение. Иммуноглобулины также должны быть отнесены к сложным белкам, так как в их состав входят от 2,9 до 12% углеводов. Иммунопротеиды обладают общими характерными сво11ствами так, при электрофорезе они распределяются главным образом в 7-глобулиновой и отчасти — в р-глобулиновой зонах (рис. 88) электрофореграммы белков сыворотки крови (см. стр. 218). Общими для них являются одинаковые принципы строения, ряд антигенных свойств, а также все они обладают активностью антител. [c.206]

    Приведенных примеров (поляризация при электродиализе, обратном осмосе, эффект релаксации в электрофорезе и др.) достаточно для следующего утверждения кинетические процессы, протекающие в зонах ДЭС, неизбежно сами влияют на структуру п свойства ДЭС (обратная связь), изменяя ее, и рассмотренный выше классический режим электроповерхностных явлений должен быть дополнен представлениями о поляризационном режиме, ибо этими, более общими представлениями в настоящее время во многих случаях нельзя пренебречь. [c.219]

    Электрохимические методы. Для разделения и идентификации компонентов смесей применяют методы электрофореза (электрофоретические методы), основанные на использовании различий в скоростях движения заряженных частиц растворенных веществ во внешнем электрическом поле. Перемещаясь с различными скоростями под действием внешнего электрического поля, заряженные частицы (ионы) в конце концов разделяются на зоны, каждая из которых содержит ионы одинаковой природы. Эти зоны можно затем идентифицировать различными способами. [c.236]

    При обычном иммуноэлектрофорезе иммунодиффузию осуществляют так, как если бы это была двойная иммунодиффузия из расположенных под прямым углом канавок или из круглых лунок и канавок [80, 261, 952]. Однако разделенные при электрофорезе зоны не имеют четко очерченной формы, и вещества в них распределены неравномерно. Поэтому линии преципитации на иммуноэлектрофореграмме представляют собой более или менее удлиненные симметричные или асимметричные дуги. Удлинение дуг наблюдается, в частности, в тех случаях, когда в анализируемом образце содержатся вещества, обладающие одинаковой антигенной активностью, но разной электрофоретической подвижностью (наиболее известным примером подобных антигенов являются нормальные иммуноглобулины). Если антиген удерживается гелем (как, например, в случае микроглобулинов или ЛНП), то образуются линии преципитации неправильной формы. Иммуноэлектрофорез имеет более низкую чувствительность, чем двойная иммунодиффузия, поскольку в процессе электрофореза происходит разбавление антигенов вследствие расширения разделенных зон. [c.237]

    В этом разделе мы не намереваемся описывать все методические подробности, а хотим лишь обрисовать основные особенности используемых процедур. После проведения электрофореза зоны белков должны быть визуализированы. Этой цели служит процедура окращивания, в которой обычно используетс какой-нибудь органический краситель, прочно связывающийся с белками. Существует много пригодных для этого красителей. Они должны удовлетворять следующим требованиям 1) обладать высокой чувствительностью, позволяющей определять малые количества белка и 2) интенсивность окраски должна быть, пропорциональна количеству белка независимо от его типа. Большинство используемых красителей притягивается к положительно заряженным группам в молекулах белков (к остаткам лизина и аргинина) следовательно, белки с более высоким содержанием таких групп — обычно это более основные белки — окрашиваются сильнее. В результате некоторые кислые полипептиды могут остаться незамеченными из-за слиш1сом слабого связывания красителя. [c.325]

    Наряду с мембранными методами для разделения заряженных частиц или молекул можно использовать их различную подвижность в электрическом поле - зонный электрофорез. До настоящего времени описано лишь несколько случаев применения электрофореза в анализе суперэкотоксикантов. Тем не менее этот метод вызывает в последние годы повышенный интерес, особенно его капиллярный вариант [115, 116], поскольку в обычном зонном электрофорезе из-за конвекции раствора, вызванной его нагреванием при прохождении электрического тока, зоны размываются, и не происходит их разделения на узкие полосы Для предотвращения размывания зон электрофорез проводят в капиллярных трз бках. [c.227]

    И менее точен, но зато значительно проще, чем метод Тизелиуса. На полоску фильтровальной бумаги, увлажненной буферным раствором, наносят в форме поперечной черточки или пятна исследуемый биоколлоидный раствор. Полоску помещают в горизонтальном положении в закрытое пространство, а концы ее погружают в буферный раствор, где находятся электроды. После подключения источника электродвижущей силы электрическое поле вызывает движение компонентов, находящихся в черточке или пятне, вдоль полоски. Скорость перемещения компонентов зависит от их электрофоретической подвижности. Через некоторое время электрофорез прекращают, бумагу высушивают и погружают в раствор красителя, который на биоколлоиде адсорбируется сильнее, чем на бумаге. По полученному изображению видно положение компонентов в конце электрофореза, и можно судить об их числе и электрофоретической подвижности. Из сказанного выше видно, что бумага играет роль пористой среды, препятствующей растеканию компонентов и их конвективному перемешиванию со средой, в которой протекает электрофорез . В последнее время вместо бумаги используют гелеобразные среды (агар-агар, желатин), которые дают более резко очерченные зоны. Электрофорез на бумаге (и в других средах) сопровождается побочными явлениями, такими, например, как перенос вещества, вызываемый миграцией испаряющегося буфера (Машбёф, Ребейрот и др., 1953 г.). Кроме того, было установлено (Шелудко, Константинов, Цветанов, 1959 г.), что, например, в желатине не только сама электрофоретическая подвижность некоторых красителей меньше, чем в воде или водных растворах, но и соотношение между подвижностями компонентов в этом случае совсем иное. Эти особенности метода еще не до конца изучены. Поскольку рассматриваемый метод имеет важное практическое значение, различные проблемы создаваемой в настоящее время теории электрофореза в пористых и гелеобразных средах п разнообразные методы его использования являются предметом многих научных трудов. Некоторое представление о них читатель может получить из монографии [6 1. [c.158]

    Для разделения смесей нашли применение в основном два способа электрофореза метод подвижной границы (или свободный электрофорез) и зонный электрофорез. При свободном электрофорезе (в жидкой среде) каждый компонент смеси после разделения имеет лишь одну четкую границу — фронт зоны. Вторая граница (тыл зоны) размыта, и на нее наслаивается фронт следующего компонента. Вследствие этого невозможно выделить чистые компоненты. При зонном электрофорезе получают четкое разделение компонентов смеси на зоны, ограниченные двумя границами ( фронтом и тылом ). Для получения зон с четкими границами ограничивают диффузию различными способами и осуществляют антиконвекционную стабилизацию зон. [c.362]

    Электрофорез, электроосмос и диполофорез (см. разделы ХП.З и ХП.7) могут интенсифицировать транспортировку частиц в зону формирования осадка. Какой из этих эффектов превалирует, зависит от свойств гранул. В проводящей среде составляющая постоянного поля Хп, нормальная к поверхности непроводящего тела, обращается в нуль. Распределение линий напряженности поля при различных соотношениях проводимости сферических гранул к и среды Кт и пространственное распределение поля в окрестности гранул фильтрующего слоя схематически изображено на рис. XVIII. 3. [c.344]

    Зонный электрофорез на бумаге. Различают бумажный электрофорез низковольтный (при градиенте напряжения 20—30 В/см) и высоковольтный (с градиентом напряжения до 200 В/см). Высоковольтный электрофорез применяют для разделения низкомолекулярных соединений. Приборы оборудуют устройствами для отвода джоулевой теплоты, для чего используют инертные жидкости (тетрахлорид углерода, толуол), в которые помещают пропитанные буферным раствором бумажные полоски (фореграммы). Сама жидкость охлаждается с помощью погруженного в нее холодильника. [c.363]

    Чередование зон устойчивости характерно для электролитов, коагулирующие ионы которых мпогозарядные ионы Ре +, ТЬ +, Сг + и органические ионы. Для понимания причин, вызывающих чередование зон, интересно сравнить устойчивость золей и скорость электрофореза частиц, характеризующую величину и знак заряда (рис. 45). Как видно на рисунке, уменьшение абсолютной величины заряда частицы совпадает с первой областью коагуляции. Затем частица вновь приобретает заряд, но уже противоположного знака, чему соответствует вторая область устойчивости. Дальнейшее повышение концентрации приводит к падению абсолютной величины заряда частицы и к коагуляции золя. Сравнение устойчивости и заряда показывает, что явление неправильных рядов вызвано перезарядкой поверхности. [c.116]

    Наряду с разделением белков по величине электрофоретической подвижности ири использовании указанных носителей имеет значение молекулярно-ситовой эффект геля и размеры молекул Оелка ири прохождении их через ячеистую структуру геля. Так, если при электрофорезе иа бумаге белки сыворотки разделяются на 4—5 четких зон, то в полиакриламидном геле выявляется 13—16 полос, соответствующих отдельным белкам (рис. 98). [c.219]

    Длины фрагментов определяют с помощью высокоразрешающего электрофореза в тонком слое пшиакриламидного геля. Электрофорез проводится при повышенной температуре в буферной систе.ме, содержащей 7 М мочевину, что способствует разрушению вторичной структуры фрагментов детекция зон фрагментов на электрофореграмме зависит от способа мечения его конца (если это [c.16]

    Бацитрацин А, выделенный из В. subtilis, был охарактеризован Крейгом (1955) как сшитый циклопептид, состоящий из 12 аминокислотных остатков, идентифицированных после частичного гидролиза пептида и его динитрофенильного производного комбинацией противо-точного распределения, бумажной хроматографии, зонного электрофореза н полного химического анализа  [c.703]

    Электрофорез со свободно Пвпжущейся границей — или электрофорез Тизелиуса. Этот метод ксиользустся главным образом для анализа смесей белков п в отличие от зонного электрофореза дает представление об истинной подвижности мигрирующих частиц. [c.403]

    Скорость течения жидкости (скорость элюции) можно регулировать наклоном пластины (обычно в диапазоне 5—20°). Для проявления результатов фракционирования удобнее всего воспользоваться методом снятия реплики. На влажный гель на 1 мин кладут листок толстой фильтровальной бумаги ( Whatman 3 ММ ) и прижимают его стеклянной пластиной. За это время жидкость из пространства между гранулами переходит на бумагу, а вместе с ней — и макромолекулы, находившиеся в подвижной фазе каждой хроматографической зоны. Фильтровальную бумагу затем подсушивают и пятна на ней выявляют одним из многочисленных методов окраски белков или НК, путем регистрации ферментативной активности, радиоактивности, иммунными методами и т. д. Все эти методы выявления были подробно рассмотрены при описании электрофореза и иммуноэлектрофореза [Остерман, 1981, 1983]. [c.163]

    Подготовка камеры. Отсеки для электродов наполняют буферным раствором до одинакового уровня (во избежание перетекания буфера), примерно по 800 мл в каждый отсек. Во внутренние части электродных отсеков погружают электроды. На листе хроматографической бумаги (18X45 см) (при использовании тонких сортов бумаги образцы лучше наносить на отдельные полоски шириной 4—5 см) на расстоянии 15 см от одного из его узких сторон простым мягким карандашом (графит препятствует растеканию жидкости) очерчивают места для нанесения проб. Они представляют собой прямоугольники (2X0,3 см), большие < тороны которых располагают перпендикулярно длине бумажной полосы. Расстояние между стартовыми зонами и краями электрофореграм-мы — 2 см. Электрофореграмму пропитывают буфером, в котором будет проходить электрофорез. Для этого ее протягивают через кювету с буферным раствором. Концы бумажных полос (6—8 см) не смачивают. От избытка буфера освобождаются, промокая полосы между дву-мя-тремя лисгами фильтровальной бумаги. Влажную электрофореграмму помещают в камеру на центральную горизонтальную пластинку (5), а концы опускают в наружные отделения электродных отсеков Прибор плотно закрывают крышкой, под которой находятся смоченные водой листы фильтровальной бумаги. [c.91]


Смотреть страницы где упоминается термин Электрофорез зонный: [c.98]    [c.20]    [c.98]    [c.77]    [c.157]    [c.60]    [c.20]    [c.168]    [c.227]    [c.229]    [c.292]    [c.364]    [c.403]    [c.140]   
Химия углеводов (1967) -- [ c.576 ]

Современная аналитическая химия (1977) -- [ c.464 ]

Лабораторное руководство по хроматографическим и смежным методам Часть 2 (1982) -- [ c.0 ]

Хроматография Практическое приложение метода Часть 1 (1986) -- [ c.12 , c.27 , c.111 , c.119 ]




ПОИСК





Смотрите так же термины и статьи:

Электрофорез



© 2025 chem21.info Реклама на сайте