Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Антитела репертуар

    Генная конверсия может служить механизмом расширения репертуара специфичности антител у кролика [c.141]

    Кажется непостижимым, каким образом иммунная система может предугадать репертуар специфичностей антител, которые потребуются в течение будущей жизни индивида. На самом деле все обстоит иначе. Просто иммунная система производит антитела, способные распознать огромное разнообразие антигенов, еще до встречи с ними. Многие из этих антител никогда не будут востребованы для защиты данного индивида от инфекции. Однако бесчисленное множество па- [c.11]


    Это приводит к существенному ограничению репертуара специфичности антител. [c.141]

    I Репертуар антител, существующий у взрослых особей, формируется в процессе лимфопоэза путем рекомбинации генных сегментов, кодирующих ТкР и 1д. [c.216]

    Разнообразие (репертуар) антител создается путем перестройки генов [c.231]

    Насколько велик репертуар антител  [c.72]

    Эксперименты Ландштейнера послужили основой первой оценки размера потенциального репертуара антител. Тридцать лет назад был обычным такой комментарий генетических и эволюционных следствий, вытекающих из результатов Ландштейнера Тем не менее, трудно понять, какие преимущества дает существование генов для синтеза антител против многих недавно синтезированных органических соединений, таких как п-амино-бензоат, 2,4-динитробензол и т. д., которые совершенно не похожи на микробные патогены. Сохранение такого избытка генетического багажа в течение бесконечного времени [c.73]

    Теперь мы конкретизируем основные элементы проблемы создания репертуара антител и молекулярные детали иммунного ответа. Тяжелая цепь каждого антитела представляет собой белок, состоящий примерно из 400 аминокислот (100 в У-обла-сти и 300 в С-области), а каждая легкая цепь состоит примерно из 200 аминокислот (100 в У-области и 100 в С-области). Так как каждая аминокислота определяется кодоном из трех оснований (приложение), в последовательности ДНК, необходимой для кодирования каждого НЬ-гетеродимера, должно быть по крайней мере 1800 (600 3) оснований при условии, что и Н-, и Ь-це-пи кодируются традиционными генами. Если существует 1 млн. разнообразных антител (по современным представлениям эта оценка разумна), это означает, что в геноме человека почти [c.79]

    В отличие от этого практически безграничного репертуара антител Т-лимфоциты узнают только короткий фрагмент (пептид) чужого белка, связанный специальной полостью в молекуле МНС антигена на поверхности клетки. Репертуар рецепторов Т-лимфоцитов (ТкР) ограничен вариациями МНС антигенов, которые создаются при связывании их с коротким чужеродным пептидом. Сложный многоэтапный процесс отбора развивающихся в тимусе Т-лимфоцитов обеспечивает создание этого ограниченного репертуара рецепторов в популяции функционирующих Т-клеток. Другой ряд сложных процессов, вовлеченных в образование антител в В-лимфо-цитах, приводит к тому, что не образуется антител против измененных МНС антигенов. Таким образом, антитела и рецепторы узнают разные стороны мира чужих антигенов. [c.87]

    Однако эти оценки размера репертуара антител все еше велики. Основа стратегии иммунной системы как мыши, так и человека — это случайные перестройки V-, D- и J-генов. Полностью функциональные белки антител закодированы в зародышевой линии как отдельные участки ДНК, ожидающие соматической перестройки и сборки в функциональный V(D)J-reH (рис. 4.5). Затем случайная комбинация Н- и L-белковых цепочек образует HL-гетеродимер — антитело. Такая стратегия хранения генетической информации чрезвычайно экономна и позволяет зашифровать миллионы потенциально полезных вариантов. [c.112]


    Молекулы антител построены, в основном, по единому плану (рис. 162). Несмотря на огромное разнообразие антиген-связыва-ющих мест, вариабельная часть молекул антител представлена 5—6 каноническими вариантами пространственной укладки и, как полагает К. Милстейн (1990), многообразие их репертуара обусловливается комбинаторикой канонических структур в сочетании с точковыми заменами аминокислотных остатков в ан-тиген-связывающих центрах. [c.569]

    По имеющимся оценкам, у мыши может вырабатываться от 10 до 10 разных молекул антител, совокупность которых называют репертуаром антител. Этот репертуар, видимо, достаточно велик для того, чтобы почти для каждой антигенной детерминанты нашелся подходящий антиген-связывающий участок. Поскольку антитела представляют собой белки, а белки кодируются генами, способность животного производить миллионы разных антител ставит чрезвычайно сложную генетическую проблему как синтезировать миллионы разных бежов, не привлекая к этому чрезмерно большого числа генов Неудивительно, что в решении этой проблемы участвует ряд уникальных генетических механизмов. [c.36]

    На введение чужеродного вещества животное отвечает об разованием антител нескольких типов, способных узнавать Этот чужой антиген. Даже если антиген очень прост по строении и практически полностью гомогенен (как, напрнмер, простое химическое вещество — гаптен), все равно в сыворотке рецнпи ента можно обнаружить по меньшей мере 5—10 различных типов антител, способных связаться с таким антигеном. Ил следует рассматривать лишь как ничтожно малую выборку из всего репертуара разных по специфичности антител, которые способна синтезировать особь данного вида (Shulman, Kohler. [c.12]

    Все приведенные примеры каталитических антител, как природных, так и получаемых с помощью белковой инженерии, не являются исчерпывающими и лишь иллюстрируют эту активно развивающуюся область исследований. Полную информацию по данному кругу вопросов можно, в частности, получить из обзоров, недавно опубликованных в ноябрьском номере J. Immunol. Methods за 2002 г., который целиком посвящен абзимам. Сколько же потенциальных ферментативных активностей заключено во всей популяции антител одного индивидуума, репертуар которых практически безграничен благодаря запрограммированному процессу соматического мутагенеза Насколько общим явлением могут быть побочные ферментативные активности белков, возникающие в результате соматических мутаций в живом организме Попытка дать ответ на эти вопросы будет предпринята ниже в разделе о ксенобиозе. [c.433]

    Расширение репертуара специфичности антител имело решающее значение в эволюции позвоночных, причем у разных групп животных оно было достигнуто различными путями. Так например, у пластиножаберных рыб, к которым относятся акулы и скаты, разнообразие генов тяжелых цепей создается примерно так же, как и разнообразие легких цепей Х-типа у мыши. Основная единица Ун-Он1—Dн2-Jн- н в геноме этих рыб повторена многократно, но, за исключением перестроек внутри каждой такой единицы, все формы свободной рекомбинации между различными генными сегментами отсутствуют. [c.140]

    Итак, к 1930-м годам стало ясно, что потенциальный репертуар антител должен бьггь гигантским и насчитывать миллионы или больше специфичностей. Ответ на другой фундаментальный вопрос все еще не был ясен как могла в ходе эволюции появиться система, способная производить антитела, которые ни- [c.74]

    В развивающихся куриных В-лимфоцитах происходит перестройка единственного интактного V-гена и образование функционального вариабельного V(D)J-rena. Затем к нему добавляются фрагменты разной длины (5-100 оснований) расположенных выше V-псевдогенов. Этот процесс называют генной конверсией. Разные результаты генной конверсии в разных В-клетках приводят к образованию большого репертуара У(В)1-последовательностей. Такой источник разнообразия функциональных антител так же эффективен, как у мышей и человека, но требует гораздо меньшего (1/20) количества ДНК зародышевой линии [12]. [c.157]

    Сколько же из этих 3 млн. потенциальных антител используется Ответ прост — мы не знаем. Однако нам известно, что около половины У-элементов никогда не участвуют в образовании антитела (то есть обнаружено, что они не перестраивались в В-клетках). Род Лангман (Ьап тап) и Мелвин Кон теоретически рассмотрели один фактор, который ограничивает репертуар антител [4]. У мыши примерно 50 миллионов В-клеток. Если случайный репертуар из 3 млн. антител разных специфичностей равномерно распределен по 50 миллионам В-клеток, то среднее число клеток с данным антителом должно быть равно примерно семнадцати. При острой бактериальной инфекции для того чтобы победить в суровой борьбе с быстро размножающимися бактериями, иммунная система должна выработать большое количество антител с достаточной авидностью, чтобы уничтожать больше бактерий, чем их образуется при размножении. Так как бактерии могут делиться чаще, чем один раз в час, а В-клетки затрачивают по крайней мере 5—6 часов на деление, это соревнование может быть выиграно только при условии, что начальное число В-клеток, связывающих эти бактерии, велико. Другие критические факторы — это скорость образования белка антитела в В-клетках и их физическая локализация относительно места инфекции. Чем ближе они находятся, тем выше [c.111]


    Однако в начале эволюционного развития системы приобретенного иммунитета, когда репертуар У-генов клеток зародышевой линии был много меньше, чем у современных позвоночных (он должен был стартовать с одного гена), соматическое гипермутирование могло давать огромное селективное преимущество. Этот процесс мог обеспечивать формирование чрезвычайно широкого репертуара антител, экспрессирующихся в В-лимфоцитах в течение жизни одного животного. Далее, при существовании обратной связи сомы и зародышевой линии соматические мутации генов вариабельной области антител могли бы стать решающим инструментом эволюции, ускоряющим построение репертуара У-генов половых клеток. Все доступные данные согласуются с этим предположением. Соматическое гипермутирование обнаруживается у всех челюстных позвоночных, имеющих систему приобретенного иммунитета, включая наиболее примитивных — хрящевых рыб [4]. [c.120]

    Затем, по-видимому, происходят следующие события. Во-первых, тысячи центроцитов составляют гигантский репертуар клеток, поверхностные антитела которых кодируются соматическими мутациями. Большинство этих антител (примерно 80%) не способны связывать антиген. Как и для любых других белков, большинство мутаций приводит к изменению формы антитела, а это нарушает соответствие форме антигена. Однако некоторые редкие мутации могут приводить к антителам, лучше соответствующим форме антигена, чем исходные (т. е. с более высокой аффинностью). Новые антитела расположены на поверхности В-центроцитов и могут конкурировать за молекулы антигена, расположенные в комплексах антиген-антитело на поверхности фолликулярных дендритных клеток. Однако для того, чтобы успешно конкурировать с антителом из комплекса (образованным в первые дни ответа), новое мутантное антитело должно иметь ту же или бдльшую аффинность. Вот суть механизма созревания аффинности — конкурентный антигенсвязывающий отбор. Центр размножения — это недолговечный орган селекции и разведения У(0)1-генов, где выживают только наиболее приспособленные В-клетки. Неудачные (с низкой аффинностью, нефункциональные) мутантные В-клетки (а их большинство) исчезают в результате запрограммированной клеточной гибели, которая называется апоптозом. [c.135]

    Такое строение ДНК-последовательностей У-генов в зародышевой линии трудно объяснить в рамках любой теории, опирающейся на полное запрещение переноса генетической информации от сомы к зародышевой линии. Во-первых, V-элементы половых клеток никогда не могли быть прямой мишенью для естественного отбора (т. е. связывания антигена). Отбору подвергается только полностью собранный белок антитела (H+L гетеродимер) на поверхности В-лимфоцита, и только он проходит проверку на антигенсвязывающую функцию. Сами по себе У-элементы клеток зародышевой линии никогда не превращаются в РНК (не транскрибируются) или в белок (не транслируются). Они экспрессируются в зрелом В-лимфоците только после перемещения ДНК в хромосоме соматической клетки, приводящего к созданию типичного перестроенного У(0)1-участка (рис. 4.5). Функциональные исследования обнаружили, что только половина репертуара V-генов зародышевой линии появляется в У(В)1-последовательностях. Многие, возможно, никогда не использовались в зрелых У(В)1-перестройках и, по-видимому, никогда не подвергались отбору. [c.155]

    Затем, должен был существовать интенсивный отбор в пользу тех организмов которые способны к соматическому гипермутированию У-генов. Это позволяло создавать большой репертуар антител для борьбы с инфекционными заболева- [c.164]

    Кроме того, должно было существовать давление отбора на увеличение репертуара У-генов зародышевой линии. Случайные мутации в половых клетках и последующий естественный отбор были бы чрезвычайно медленным способом построения такого репертуара. Кроме того, как мы уже обсуждали, эволюция гетеродимерных антигенсвязывающих центров антител и сегментация генов зародышевой линии, требующая соматической перестройки последовательностей ДНК, заметно ослабляют скорость отбора У-генов зародышевой линии. Каждое изменение структуры У-гена зародышевой линии требовало бы также образования нового репертуара генов. В этих условиях обратная связь успешных функциональных мутантных последовательностей У-генов сомы и зародышевой линии давала бы большие селективные преимущества [ 16]. [c.165]

    Нужно ли соматическое мутирование современным позвоночным Конечно, соматическое гипермутирование можно продемонстрировать экспериментально. Однако в некоторых экспериментах с инбредными мышами и патогенными вирусами (гл. 3) показано, что в ходе антивирусного ответа соматические мутации или не происходят, или, если происходят, ничего не добавляют к иммунному ответу. В самом деле, в настоящее время соматическое гипермугирование само по себе кажется почти неуместным. Существующее в зародышевой линии разнообразие генетических элементов, кодирующих тяжелые и легкие цепи антител, и комбинаторные возможности соматических клеток, которые обеспечивают быстрое образование большого репертуара антител, достаточны для ответа на неожиданности. Поэтому у ныне живущих позвоночных соматическое гипермугирование, должно быть, излишне. Тем не менее, возможно, оно до сих пор дает селективное преимущество как источник новых успешных открытых рамок считывания, возвращающихся в зародышевую линию. Его действие может уменьшать вредный эффект случайного генетического дрейфа, который потенциально направлен на уменьшение репертуара У-генов зародышевой линии в результате появления стоп-кодонов в кодирующих участках из-за точковых мутаций или вставок/потерь нуклеотидов. Короче, роль обратной связи сомы и зародышевой линии у современных позвоночных, возможно. [c.165]

    Эволюция по Ламарку, не отвергая дарвиновского естественного отбора, требует следующей причинно-следственной связи для запоминания приобретенного признака клетками в зародышевой линии животных. Измененные условия внешней среды (например, доступность пищи, новые хищники) могут приводить к изменениям поведения, строения тела, физиологических функций. Новые иммунологические воздействия могут приводить к появлению новых генов антител в В-лимфоцитах. Со временем такие соматические мутации могли бы встроиться в ДНК половых клеток. А это расширило бы репертуар наследственной изменчивости, на которую затем действует естественный отбор, сохраняющий наиболее приспособленных и приводящий к распространению адаптивных вариаций. Такая последовательность событий есть ни что иное, как проницаемость барьера Вейсмана. [c.167]

    Лимфоциты делятся на два класса В-клетки и Т-клетки, причем и те и другие образуются из стволовых клеток костного мозга. Т-клетки происходят из стволовых клеток, дифференцирующихся в тимусе, и являются функционально гетерогенными. Их гетерогенность подтверждается тем, что субпопуляции Т-клеток имеют различия не только по функциональным свойствам, но и по фенотипическим поверхностным маркерам. В-клетки не подвергаются дифференцировке в тимусе — они представляют собой лимфоциты, которые после дифференциров-ки в плазматические клетки синтезируют различные классы иммуноглобулинов, составляющие репертуар специфических антител. В-клетки находятся под контролем Т-клеток и не способны к самостоятельной дифференцировке помимо специфического антигенного стимулирования они нуждаются в помощи Т-лимфоцитов (Т-хелперов), которые обеспечивают их специфическими факторами пролиферации и дифференцировки. Другие Т-клетки (Т-супрессоры) могут подавлять образование антител В-клетками. [c.6]


Смотреть страницы где упоминается термин Антитела репертуар: [c.243]    [c.279]    [c.430]    [c.289]    [c.291]    [c.78]    [c.79]    [c.80]    [c.95]    [c.112]    [c.112]    [c.120]    [c.217]    [c.243]   
Что если Ламарк не прав Иммуногенетика и эволюция (2002) -- [ c.72 , c.79 , c.111 ]




ПОИСК





Смотрите так же термины и статьи:

Антитела



© 2025 chem21.info Реклама на сайте