Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Модели биосинтеза белка

    Биохимическая регуляция биосинтеза белка на генетическом уровне. Модель Жакоба— Моно и ее недостатки. [c.399]

    Открытие ионных каналов — это, однако, не единственный ответ на связывание медиатора. В рецепторах катехоламина, например, первичный ответ состоит в продуцировании вторичного мессенджера сАМР, который с помощью протеинкиназы регулирует не только ионную проницаемость возбудимых мембран, но также энергию метаболизма и биосинтез белка в клетке. Рецепторы, определяемые как молекулы, связывающие эндогенные лиганды, являются в действительности компонентами мембранных комплексов, состоящих из молекул разных видов одни из них связывают лиганды, а другие функционально активны в мембране. Способ, с помощью которого регулируется ионная проницаемость клеточной мембраны, можно рассмотреть на примере модели, разработанной для аксональных ионных каналов (гл. 6). [c.243]


    Антибиотики широко используют в качестве молекулярных инструментов при исследовании фундаментальных проблем биологии, таких, как расшифровка тончайших механизмов биосинтеза белка, нуклеиновых кислот и структуры клеточных стенок бактерий, создание моделей транспорта ионов через биологические мембраны и др. [c.64]

    Модели вторичных структур транспортных и рибосомных РНК подробно рассмотрены во втором томе этого учебника (Спирин А. С. Молекулярная биология Структура рибосом и биосинтез белка.— М. Высшая школа, 1986)  [c.38]

    Таким образом, на модели биосинтеза lq-компонента комплемента макрофагами получены убедительные доказательства в пользу того, что регуляция биосинтеза белка по типу обратной связи требует участия клеточного рецептора, распознающего данный белок, изолированного внеклеточного участка рецептора и собственно белка во внешней (по отношению к клетке) среде. Описанный механизм имеет, как представляется, универсальный характер и реализуется во всех случаях регуляции биосинтеза белка по типу обратной связи. [c.91]

    Одним из наиболее интересных и обнадеживающих результатов априорного расчета двух низкомолекулярных белков явилось совпадение почти с экспериментальной точностью значений двугранных углов ф, у, и и X (или координат атомов), рассчитанных и найденных опытным путем Безусловно, это достойный и эффективный финал длительного исследования. Допуская достаточность и справедливость всех положений использованной структурной теории, применимость для белков механической модели и эффективность разработанного для пептидов расчетного метода, трудно было все-таки надеяться на количественную близость теоретических и экспериментальных данных. Предполагалось, что на окончательных результатах существенным образом скажется ряд условностей в описании невалентных взаимодействий, в учете влияния среды и, по-видимому, главное, параметризации эмпирических функций. Неизбежным, особенно вначале, представлялось быстро прогрессирующее с увеличением длины цепи накопление ошибок, которое в конечном счете должно было сделать расчет природных полипептидов (даже при правильности всех исходных теоретических посылок) малоперспективным, подобно тому, как пока еще оказывается малоэффективным синтез белков на основе методов органической химии по сравнению с биосинтезом и методами генной инженерии. Почему же этого не произошло в расчете пространственных структур двух рассмотренных белков Случайно ли получено [c.468]


    По химической природе почти все бактериальные антибиотики — полипептиды или белки. Это представляет особый интерес в связи с изучением путей биосинтеза названных веществ и использованием этих путей в качестве моделей для изучения проблем биосинтеза полипептидов вообще, что имеет большое теоретическое значение. [c.184]

    Замены, влияющие на процесс свертывания, исследуются на моделях — аналогах белков. В предыдущих разделах обсуждалось влияние замен аминокислот на функцию или на стабильность свернутых белков. Однако очевидно, что наиболее отрицательное воздействие мутация оказывает на динамику свертывания полипептидной цепи. Исследование этой проблемы на естественных мутантах затруднительно по двум причинам. Во-первых, если путь свертывания белка-мутанта полностью заблокирован, то полипептидную цепь невозможно идентифицировать и выделить обычными биохимическими методами (однако можно использовать иммунологические [94, 4181 или комплементационные методики [446]). Кроме того, полипептиды, которые после их биосинтеза не свертываются совсем или свертываются слишком медленно, часто подвержены быстрому разрушению in vivo [154]. Эти трудности заставили искать модели для изучения влияния мутаций на свертывание белка среди полусинте-тических аналогов белков [497—499] или белков с модифицированными боковыми цепями [445] (разд. 8.2). [c.206]

    Актиномицины являются мощными ингибиторами ДНК-зависи-мого синтеза РНК, т. е. ступени транскрипции в биосинтезе белка см. схему (1) и служат мощным биохимическим средством. Актиномицин D нашел также ограниченное применение в клинике для лечения некоторых видов опухолей. Его действие включает образование высокоустойчивых комплексов с ДНК, что препятствует этой кислоте проявлять свое биологическое действие. В связи о этим были приложены значительные усилия по исследованию конформаций этих молекул как в кристаллическом состоянии, так и в растворе [115, 150]. Общепринятая схема взаимодействия двойной спирали ДНК с актиномицином основана на данных рентгеноструктурного исследования кристаллического комплекса, содержащего актиномицин и дезоксигуанозин (рис. 23.4.3) [151]. По этой схеме феноксазоновый хромофор внедряется между соседними парами оснований G- ДНК, где остатки гуанина принадлежат различным цепям ДНК, и две аминогруппы остатков гуанина образуют специфические водородные связи с обоими циклическими пептидами, находящимися в узком желобе спирали. Эта модель согласуется с известными данными и представляет собой важное достижение в молекулярной биологии. [c.325]

    Основные научные работы относятся к биохимии нуклеиновых кислот и биосинтезу белков. Совместно с А. Н. Белозерским предсказал (1957) существование информационной РНК. Дал (1959— 1961) первое качественное описание макромолекулярной структуры высокомолекулярных РНК. Установил структурные превращения рибосом и сформулировал один из основных принципов их строения (1963). Обнаружил (1963—1966) возможность искусственной реконструкции (самосборки) рибосом. Открыл (1964) информосомы. Предложил (1968) модель молекулярного механизма работы рибосомы в процессе биосинтеза белка. Экснериментально показал (1970—1974) совместно с Л. П. Гавриловой возможность создания упрощенной системы биосинтеза белка на структурно модифицированных рибосомах вне клетки ( неэнзиматическая трансляция). [c.474]

    Другие авторы пользовались моделью оперона для объяснения изменений концентраций ферментов в организме млекопитающих при разных метаболических состояниях. Г. Вебер и сотрудники [611 показали, что у голодных крыс наблюдалось значительное уменьшение концентраций трех ключевых ферментов гликолиза, а именно ферментов 1, 2 н 3 (фиг. 23). Количества этих ферментов возрастали, ког./щ животных начинали кормить, о/днако если сначала в пищу животных добавляли ингибитор ы биосинтеза белка, то увеличения количества , )ерментов не наблюдалось. Это дает основание ду мать, что увеличение активности трех ферментов — глюко-киназы, фосфофруктокиназы и пируваткиназы — связано с биосинтезом этих ферментов de novo. В отличие от ферментов гликолиза количество ключевых ферментов глюконеогенеза (4, 5, 6, 7 на фиг. 23) у голодных крыс или совсем не менялось, [c.76]

    Нуклеиновые кислоты имеют первостепенное значение в биосинтезе белка. На основании имеющихся данных строение дезоксирибонуклеиновой кислоты, повидимому, определяет специфичность синтеза рибонуклеиновой кислоты на поверхности последней при участии ряда энзимов и кофакторов в соответствии с ее структурой располагаются в определенной последовательности активированные аминокислоты, которые затем соединяются друг с другом кислотноамидными (пептидными) связями в полипептидную цепь. Такое формирование полипептидной цепи на частице рибонуклеиновой кислоты, имеющей определенную структуру, приводит к образованию специфической белковой молекулы, как бы отлитой на рибонуклеиновой модели. [c.328]

    Хлоропласты имеют определенную биохимическую и генетическую автономность. В них синтезируется ДНК, которая отличается от ядерной ДНК. Хлоропластам свойственны также своя белоксинтезируюнхая система (рибосомы) и автономность процесса биосинтеза белка. Увеличение размеров пластид коррелирует с накоплением белка. Хлоропласт можно представить как уменьшенную и упрощенную модель клетки, которая реагирует на. действие света включением и выключением своих генов. Основная функция хлоропластов — участие в процессе фотосинтеза. Функция лейкопластов — участие во вторичном синтезе крахмала в клетках. Хромопласты, как прави.по, [c.60]


    Биоорганическая химия сблизила и иереилела практическую деятельность химика-органика и биохимика. В данной главе авторы постарались показать взаимосвязи между органической химией и биохимией, с одной стороны, и химией белка и медицинской химией (фармакологией) —с другой. Как основной используется химический подход, н механизм биохимических реакций описывается в сравнении с их синтетическими моделями. Органический синтез и биосинтез пептидной и фосфоэфирной связи (гл. 3) рассматриваются параллельно таким образом выявляется удивительный ряд сходных закономерностей. Каждая аминокислота представлена как отдельное химическое соединение с уникальным набором свойств. Способность аминокислот к диссоциации обсуждается в терминах, принятых в органической химии для кислот и оснований, и фундаментальные свойства аминокислот подаются читателю так, чтобы не было впечатления, будто аминокислота — это нечто совершенно особенное. Химия аминокислот представлена как часть курса органической химии (реакции ал-килирования, ацилирования и т. п.), а сведения по биохимии рассмотрены с химической точки зрения. [c.26]

    Описанная модель структурной самоорганизации белка непосредственно отвечает ренатурационному процессу, протекающему в условиях in vitro, когда исходное конформационное состояние молекулы максимально неупорядоченно. Сборка белка в процессе биосинтеза и при содействии шаперонов протекает в принципе по тому же беспорядочно-поисковому механизму и поэтому не требует разработки специальных моделей. Возможность свертывания аминокислотной последовательности до окончания синтеза и отхода от рибосомы в первом случае, и взаимодействие флуктуирующей цепи со специфическими белками во втором ограничивают конформационную свободу неструктурированного белка. В результате уменьшается количество обратимых, непродуктивных флуктуаций, увеличивается вероятность появления бифуркаций и, следовательно, сокращается время сборки. Иными словами, запрещая целый ряд обратимых флуктуаций, шапероны сближают друг с другом бифуркационные точки и тем самым делают процесс самоорганизации нативной конформации белка более эффективным. [c.99]

    Побеги, изолированные от взрослого материнского растения (черенки), способны вновь образовывать корни и превращаться в самостоятельное растение, причем интенсивность корнеобразования у таких черенков зависит от ряда внешних и внутренних факторов, и в частности от баланса природных регуляторов роста (Турецкая, 1961 Турецкая, Кефели, Коф, 1966 Kefeli, 1968). Ризогенез стеблевых черенков представляет собой удобную модель для изучения индукционных процессов — образования новых тканей и целых органов. Формирование корневых зачатков из тканей стебля можно рассматривать как смену программ развития, которые определяются индукторными веществами, вызывающими появление заранее запрограммированных последовательных процессов (Боннер, 1968). Клетки тканей стебля под действием эндогенных фитогормонов как бы перестраивают направление своего метаболизма, и в них начинается биосинтез новых продуктов, ведущих к заложению корневых зачатков. Дифференциаш я новых органов не ограничивается действием одних фитогормонов. Она тесно связана и с процессом синтеза белков, специфических для разных этапов онтогенеза (Бутенко, 1964 Бутенко, Володарский, 1967). [c.127]

    Ризогенез — образование корней на черенках — представляет собой процесс формирования нового органа из клеток материнского растения (Турецкая, 1961). Ризогенез — в сущности удобная модель для изучения морфогенетических процессов образования новых тканей и целых органов. Формирование корневых зачатков из тканей стебля можно рассматривать как смену программ развития, которые определяются индукторными веществами, вызывающими появление заранее запрограммированных последовательных превращений (Боннер, 1968). Клетки тканей стебля под действием эндогенных фитогормонов как бы перестраивают направление своего метаболизма, и в них открываются биосинтезы новых продуктов, ведущих к заложению корневых зачатков. Дифференциация новых органов не ограничивается действием одних фитогормонов, она тесно связана и с процессом синтеза белков, специфических для разных этапов онтогенеза (Бутенко, 1964 Бутенко, Володарский, [c.177]

    ТИД из 14 аминокислот, в числе которых-два соседних остатка триптофана. Само по себе это достаточно примечательно, поскольку частота встречаемости триптофана в белках обычно составляет 1 на 100 аминокислотных остатков. Вторая особенность заключается в присутствии последовательностей, которые могут формировать три взаимоисключающих варианта вторичной структуры, показанные на рис. 15.21 и 15.22. Одна из щпилечных структур очень напоминает структуру терминатора. Обе эти особенности были обнаружены также в структуре других оперонов биосинтеза аминокислот при анализе последовательности со-ответствуюпщх лидерных транскриптов. Каждый из этих транскриптов кодирует небольщой полипептид, содержащий несколько аминокислотных остатков-продуктов биосинтеза, направляемого данным оперо-ном (рис. 15.23). Последовательность каждого из них может формировать три взаимоисключающих варианта вторичной структуры, один из которых напоминает структуру терминатора. Эти наблюдения привели к формулировке модели аттенуации, основанной на представлении [c.197]

    Описанные в данной главе эксперименты свидетельствуют в пользу использования in vitro мутагенеза клонированных генов НА для изучения функции гидрофобных областей белка. Существуют многочисленные возможности распространения этой технологии на другие участки молекулы, включая пептид слияния, антигенные сайты, сайт связывания рецептора и точки прикрепления углевода. Точный анализ роли индивидуальных аминокислот в структуре и функции белка может быть проведен при введении изменений в одном основании в определенных сайтах в гене НА с использованием олигонуклеотидуправляемого мутагенеза [32]. Хотя подобные эксперименты будут особенно уместны для нашего анализа молекулы НА, эти дополнительные результаты весьма ценны для понимания структуры и функции цельных мембранных белков в общем смысле. Не говоря об особенных свойствах, связанных с антиген-ностью и биологическим значением, структура молекулы НА характерна для основного класса клеточных мембранных белков. Более того, поскольку биосинтез НА включает ферменты клетки хозяина и процессы во время трансляции, мембранного транспорта, гликозилирования и созревания, НА представляет собой полезную модель для изучения мембранных белков и органелл. [c.184]

    В процессе биосинтеза или по его завершению линейная молекула полипептида должна свернуться правильным образом с образованием нативной пространственной структуры, необходимой для ее функционирования. Процесс сворачивания (фолдинга) полипептидной цепи может происходить как самопроизвольно, так и с участием белков-помощников - шаперонов. В соответствии с современными моделями, высококооперативный процесс фолдинга полипептидных цепей происходит по механизму нукле- [c.279]


Смотреть страницы где упоминается термин Модели биосинтеза белка: [c.336]    [c.405]    [c.291]    [c.71]    [c.210]    [c.210]    [c.63]    [c.338]    [c.307]    [c.185]    [c.288]    [c.286]    [c.185]   
Сборник Иммуногенез и клеточная дифференцировка (1978) -- [ c.67 , c.69 ]




ПОИСК







© 2025 chem21.info Реклама на сайте