Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Сульфид железа, физико-химические

    Физико-химические свойства серы и сульфидов железа [c.35]

    Таким образом, под формами нахождения химических элементов понимается любая форма проявления их в реальной действительности, поддающаяся качественному и количественному определению химическими или физико-химическими методами. Такими формами будут сульфатный, карбонатный, сульфидный свинец, но сульфат, карбонат и сульфид свинца сами по себе являются индивидуальными веществами. Методами вещественного химического анализа непосредственно определяются не сульфат свинца в целом, а лишь сульфатный свинец и т. п. Согласно с указаниями многих исследователей, следует, однако, считать задачи вещественного анализа более широкими, чем определение форм элементов, находящихся в виде различных соединений или фаз. В частности формами нахождения элементов могут быть ноны элементов различной валентности или различного состава. Так, например, раствор может содержать одновременно ионы двух- и трехвалентного железа. Эти формы проявления железа не могут быть вызваны ни химическими соединениями, ни минералами, пи тем более фазами, и потому определение их, как уже упоминалось, не может быть, строго говоря, задачей фазового или минерального анализа. Однако каждый из этих ионов обладает специфическими химическими свойствами и потому может быть с той или иной точностью определен химическими методами. Таким образом, понятия вещественный анализ , вещество , формы элемента оказываются более широкими, чем понятия фазовый анализ и фаза . Они охватывают при современном состоянии развития вещественного анализа практически все формы проявления химических элементов в реальной действительности, определяемые химическими или физико-химическими методами. [c.12]


    Взаимодействие нефтяных сульфидов с галогенами, галогеналкилам и, солями и комплексами тяжелых металлов. Нефтяные сульфиды образуют стабильные комплексы донорно-акцепторного типа с галогенами, галоген-алкилами (метилиодидом и др.), с солями металлов — олова, серебра, ртути, алюминия, цинка, титана, галлия и другими кислотами Льюиса за счет передачи неподеленной пары электронов атома серы на свободную электронную орбиталь акцептора. Важнейшие комплексообразователи — хлорид алюминия, тетрахлорид титана, хлорид ртути(II), ацетат серебра, карбонилы железа. Реакции комплексообразования не селективны, в той или иной степени они протекают и с другими типами гетероатомных соединений. Однако в сочетании с другими физико-химическими методами ком-плексообразование служит важным инструментом установления состава, строения сульфидов. [c.250]

    В табл. 12 приведены некоторые физико-химические свойства серы, пирита и сульфида железа (Ге8), продукта, который образуется при термическом разложении пирита  [c.34]

    Базовые и эталонные физико-химические характеристики нефти следует определять как можно полнее. Обычно замеряют давление насыщения, газовый фактор, плотность, вязкость пластовой и поверхностной нефти, коэффициент сжимаемости, фракционный состав нефти, поверхностное натяжение. В процессе сопоставления базовой и эталонной характеристик для последующего использования отбираются те параметры нефти, которые в наибольшей степени зависят от смешения с химреагентом. Обычно это — вязкость и поверхностное натяжение. Используют также такие показатели как концентрация механических примесей и сульфидов железа в нефти, которые характеризуют влияние химреагента на коррозионную активность пластовой продукции. Получение базовой и эталонной характеристик нефти возможно путем исследования глубинной пробы, взятой из какой-либо одной добывающей скважины. Рабочие же характеристики в период внедрения метода ПНО следует получать по всем скважинам объекта внедрения. [c.89]

    Первой и основной причиной агрегативной неустойчивости дисперсий является высокое значение межфазного натяжения на границе твердой и жидкой фаз, выражающееся, в частности, в плохом смачивании поверхности частиц в дисперсионной среде. Лиофобные дисперсии, в частности суспензии гидрофобного угля в полярных (водных) средах, обнаруживают агрегативную неустойчивость, выражающуюся в самопроизвольном агрегировании частиц (автокоагуляция под действием молекулярных сил) с образованием агрегатов и пространственных структур. Но вместе с тем в углях содержится небольшое количество неорганических веществ (алюмосиликатов, сульфидов, главным образом железа, карбонатов кальция, магния, железа), поэтому наблюдается неплохая смачиваемость угля водой. Поверхность угля мозаична, на ней есть лиофильные и лиофобные участки. Из анализа литературных данных и приведенных выше результатов рентгеноструктурных исследований также следует, что поверхность угля по физико-химической природе неоднородна [7, 133]. [c.165]


    Разработанные методы анализа медно-никелевых агломератов позволяют определять содержание никеля, меди и железа в форме сульфатов, сульфидов, окислов и ферритов. Химическое исследование состава агломератов дает возможность судить о характере протекающих в них физико-химических процессов. [c.254]

    Обзор методов контроля качества углей на основе стандартов ФРГ и ЧССР на выпускаемые в этих странах активные угли дан в монографии [11]. Согласно этим документам, химические свойства углей характеризуются содержанием золы, влаги, железа, свинца, хлоридов, показателем pH, а для активных углей, применяемых в медицине, — содержанием цианидов, сульфидов, хлоридов и нитратов. Для характеристики углей по физико-механическим свойствам контролируют фракционный состав, механическую прочность (сопротивление удару), насыпную плотность, теплоту смачивания. Сорбционные свойства углей контролируют адсорбцией по бензолу, определением времени защитного действия (для противогазовых углей), обесцвечивающей способностью по мелассе и определением полувысоты слоя дехлорирования (для углей, применяемых для обработки питьевой воды). Свойства углей, используемых в медицине, должны контролироваться в соответствии с испытаниями, предписанными фармакопеей или соответствующими стандартами стран [11]. [c.86]

    Выделенные на основном осадке элементы должны быть затем переведены в раствор. Для этого широко используют растворение выделенного элемента вместе с основным осадком или селективное отделение его от основного осадка. Например, цинк, соосажденный на гидроксиде железа, переводят в раствор вместе с железом растворением в серной кислоте. Сульфид индия, соосажденный на сульфиде галлия, отделяют от последнего трехкратной обработкой соляной кислотой, при этом в раствор переходит только индий. В полученном растворе сконцентрированные элементы могут быть определены обычными ч вствительиыми физико-химическими методами. [c.257]

    В настоящее время интенсивно развивается раздел физики и механики, связанный с изучением механических и физико-химических процессов, происходящих при прохождении сильных ударных волн в металлах, минералах, полимерах и других твердых телах. Это связано с развитием как традиционных направлений человеческой деятельности, где используются взрыв и высокоскоростное соударение, так и с развитием новых технологических процессов. Сейчас в технике используются методы взрывной обработки (ковка, штамповка) различных металлов взрывом. Методы взрывного или ударного обжатия позволяют синтезировать новые вещества, например искусственный алмаз из графита, сверхтвердое вещество боразон из нитрида бора, различные полимеры и т. д. Упрочнение металлов, образование новых веществ, их модификаций и фаз, все это связано с физико-химическими процессами, инициируемыми ударными волнами с давлениями 1 — 10 ГПа ). Расчет таких волновых процессов усложняется, ибо эти физико-химические процессы могут сильно влиять на поведение инициирующих ударных волн. Фазовые переходы под действием ударного нагружения (например, полиморфное превращение а-железа (Ре ) в е-железо (Ре ), графит- - алмаз, превращения в минералах, в ионных кристаллах, сульфиде кадмия, кварце, нитриде бора и т. д.) приводят к многофронтовым ударным волнам и к ударным волнам разгрузки. Как фазовый переход 2-го рода может рассматриваться и развитие пластических деформаций в твердых телах. Ударные волны вызывают химическое и фазовое превращение в твердых взрывчатых веществах (ВБ). Для анализа этих процессов необходимы разработка математических моделей двухфазного упругонластического твердого тела, в котором проявляются эффекты прочности и физико-химические превращения, и разработка соответствующих вычислительных алгоритмов. [c.241]


Смотреть страницы где упоминается термин Сульфид железа, физико-химические: [c.23]    [c.18]    [c.121]    [c.741]    [c.723]    [c.18]    [c.198]    [c.939]    [c.121]   
Печи химической промышленности Издание 2 (1975) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Железо сульфид

Железо химические



© 2025 chem21.info Реклама на сайте