Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Физико-химические измерения, определение точности

    Физико-химические (или инструментальные) методы анализа— это условное название большого числа количественных методов, основанных на измерении различных физических и химических свойств соединений и простых веществ (поглощение лучистой энергии, дисперсия, флуоресценция, потенциал разложения, поверхностное натяжение и т. д.) с использованием соответствующих приборов. Применение их позволяет намного полнее охарактеризовать состав и количество исследуемых материалов, сократить по сравнению с химическими методами продолжительность определений и повысить точность. [c.60]


    Физико-химические методы. За последние годы начинают приобретать значение физико-химические методы определения конфигурации гликозидного центра, хотя приходится признать, что внедрение физико-химических методов в химию углеводов происходит несравненно медленнее, чем в области изучения других сложных природных соединений. Несмотря на близость большинства физико-химических констант аномерных гликозидов, в некоторых случаях можно сделать достаточно определенные заключения. Так, например, молекулярная рефракция (М/ о) р-аномера выражается, как правило, большей величиной, однако методические трудности, связанные с ее измерением, и недостаточная точность этой константы затрудняют использование этого приема для определения конфигурации гликозидного центра. [c.46]

    Достижения газовой хроматографии как метода разделения веществ в сочетании с такими современными средствами качественного анализа, как инфракрасная и масс-спектрометрия, химические реакции, в определенной степени заслонили возможности чисто хроматографической идентификации, основанной на использовании закономерностей, связывающих удерживание со строением и физико-химическими свойствами сорбатов и неподвижных фаз. Однако в последние годы получило развитие новое направление, которое условно можно назвать прецизионной газовой хроматографией, имея в виду повышение точности не только результатов количественных определений, но и измерения величин удерживания, что резко увеличивает надежность групповой и индивидуальной идентификации как чистых соединений, так и компонентов сложных смесей. Кроме того, развиваются представления о хроматографическом спектре как о совокупности данных, однозначно соответствующей группе сорбатов близкого строения или индивидуальному соединению. Эти успехи позволяют рассматривать газовую хроматографию как самостоятельный метод качественного анализа. [c.3]

    Если не считать результатов тривиальной экстраполяции значений давления пара над жидкостями до тройной точки, то, по-видимому, данные о давлении пара имеются не более чем для 300 кристаллических органических веществ. Многие из старых данных представляют сомнительную ценность, так как раньше определения проводились с веществами сомнительной чистоты, и только около 10% данных получено с точностью, приближающейся к возможной точности физико-химических измерений. Но даже наиболее точные данные, полученные в различных лабораториях, как будто одинакового уровня, значительно расходятся. [c.98]


    Сравнение хроматографических методов определения термодинамических характеристик сорбции с статическими показывает, что наряду с удовлетворительной точностью результатов газовая хроматография обладает несомненными преимуществами, к числу которых относится автоматизация процесса, экспрессность, а также возможность работы с веществами низкой степени чистоты. Последнее преимущество связано с тем, что при проведении физико-химического измерения одновременно реализуется возможность газовой хроматографии как метода разделения, присутствующие в образце примеси отделяются от основного вещества. Эти возможности хроматографии особенно ярко проявляются в тех случаях, когда на основании однократного процесса, проведенного на высокоэффективной колонке, исследователь может определить физико-химические характеристики индивидуальных компонентов сложных смесей [9]. Так, хроматограмма бензиновой фракции, включающей десятки индивидуальных углеводородов, служит основой для расчета термодинамических функций сорбции каждого из этих углеводородов неподвижной фазой [10]. [c.309]

    В интересах точности не следует утверждать, что биологическая активность определяется каким-либо одним типом функциональных групп (например, фенольными или аминными группами и т. п.) правильнее считать, что данная функциональная группа или определенная часть функциональных групп одного или, возможно, нескольких типов участвует в создании структуры, обусловливающей биологическую активность. Именно эти специфические структурные соотношения можно успешно исследовать при помощи физико-химических измерений. Во-первых, если нельзя показать, что при деблокировании первоначально экранированных функциональных групп биологическая активность восстанавливается, то следует при помощи физических методов установить, что денатурация не имела места. Во-вторых, следует выяснить степень молекулярной и электрохимической гетерогенности производных в ее связи с критерием гомогенности биологической активности. В-третьих, необходимо учесть возможные неспецифические влияния модификации белка на его физическую структуру. Если с одним молем белка вступает в реакцию только один моль реагента, в результате чего образуется совершенно неактивное соединение (как это наблюдается в случае ДФФ-химотрипсина), то можно утверждать, что активность белка обусловлена только одной, хотя и неизвестной до сих пор [141 в], функциональной группой или одним участком белковой молекулы. Однако если интенсивное замещение или блокировка только уменьшают активность, то этот эффект, повидимому, не является специфическим и объясняется общим изменением суммарного заряда или микроскопическим перераспределением. Следует принимать во внимание также и стерические эффекты. В настоящее время большое разнообразие относительно специфических химических реагентов позволяет производить исследование как электростатических, так и стерических эффектов. Это можно сделать, обрабатывая белок, например, такими двумя реагентами, как кетен и недокись углерода, один из которых образует новую нейтральную функциональную группу, а второй превращает основную функциональную группу в группу с кислотными свойствами. Подобным же образом для введения в одно и то же положение положительного или отрицательного заряда, а также для исследования стерических затруднений можно применять диазосоединения. Для такого рода исследований можно воспользоваться целым рядом аналогичных комбинаций. [c.352]

    Здесь следует подчеркнуть, что при оценке значения комплексонов для весового анализа мы будем исходить главным образом из экспериментальных работ, а не из результатов теоретических исследований или физико-химических измерений, которым была посвящена первая часть этой книги. Рассмотрим некоторые общие соображения. Применимость и точность весового метода прежде всего обусловлены малой растворимостью осадка, определяемого взвешиванием (если осадок имеет определенный состав после высушивания), либо незначительной растворимостью продукта реакции, который после выделения переводят в определенную весовую форму. [c.90]

    Применение комплексонов, главным образом этилендиаминтетрауксусной кислоты для весового анализа, имеет особое значение. Здесь следует подчеркнуть, что при оценке значения комплексонов для весового анализа мы будем исходить главным образом из экспериментальных работ, а не из результатов теоретических исследований или физико-химических измерений, которым была посвящена первая часть этой книги. Рассмотрим некоторые общие соображения. Применимость и точность весового метода прежде всего обусловлены малой растворимостью осадка, определяемого непосредственно взвешиванием (если осадок имеет определенный состав после высушивания), либо переводимого в определенную весовую форму, например прокаливанием. Нерастворимость химических соединений определяется величиной произведения раство- [c.107]


    Для определения термодинамических величин, наряду с насадочными колонками, целесообразно (а иногда и единственно возможно) использовать открытые капиллярные колонки. Применение капиллярной хроматографии имеет следующие преимущества (по сравнению с использованием для физико-химических измерений газохроматографических методов на насадочных колонках) 1) использование небольших количеств веществ для их исследования в качестве НЖФ ( 1 -5 мг) 2) высокая разрешающая способность, позволяющая одновременно проводить измерения для большого числа летучих соединений при использовании в качестве исходных сложных смесей летучих соединений , 3) невысокая адсорбционная способность стенок капиллярных колонок (по сравнению с поверхностью обычных ТН, используемых в насадочных колонках) 4) более низкие температуры измерения, что допускает проведение измерений для термически нестабильных соединений 5) более высокая точность измерения удерживания. Однако капиллярные колонки используют для проведения физикохимических измерений неоправданно редко. Одной из причин такой ситуации являются затруднения, возникающие при определении массы НЖФ в колонке. Удобный и простой метод определения массы НЖФ в капиллярной колонке описан в работе [200]. Расчет т, проводи.чи по уравнению  [c.61]

    За короткий период своего интенсивного развития газовая хроматография проделала большой и интересный путь превраш,е-ния из метода анализа газов в универсальный метод исследования, используемый для целей анализа, препаративного выделения веществ самого разнообразного строения и для физико-химических измерений. Рассматривая тенденции развития аналитической газовой хроматографии с точки зрения повышения ее универсальности (главным образом за счет возможности определения все более тяжелых веществ), точности и чувствительности, а также детальности разделения, следует выделить следующие основные направления  [c.5]

    Глава 1. Определение точности физико-химических измерений. .. 10 [c.3]

    Заново написаны главы Определение точности физико-химических измерений , Применение графических методов при обработке опытных данных , Термохимия , Кинетика гомогенных химических реакций . [c.9]

    ОПРЕДЕЛЕНИЕ ТОЧНОСТИ ФИЗИКО-ХИМИЧЕСКИХ ИЗМЕРЕНИЙ [c.11]

    Достоинствами микротвердомера МТР-1 являются отсутствие трения скольжения стержня индентора особая конструкция подвески индентора, устанавливаемой строго вертикально к поверхности образца, что исключает боковые составляющие силы и, следовательно, уменьшает разброс показаний при повторных измерениях автоматическое нагружение и разгружение индентора по заданной программе, чем обеспечивается точность получаемых данных при строго определенном времени выдержки индентора на образце. Прибор позволяет обнаруживать даже небольшие изменения твердости, происходящие в резинах под воздействием физико-химических факторов. [c.68]

    Усовершенствование техники рентгеноструктурных исследований привело к значительному повышению точности измерения интенсивности дифракционных лучей. Одновременно разработка методов эффективного учета различных побочных факторов, влияющих на интенсивность, позволила существенно понизить потери в точности при переходе от интенсивности к структурным амплитудам, а следовательно, адекватно снизить уровень погрешности в определении электронной"" плотности, координат атомов и констант колебаний атомов. Это дает возможность направить рентгеноструктурный анализ на решение ряда новых физико-химических задач, лежащих за пределами статической атомной структуры кристалла. Это прежде всего следующие задачи а) анализ тепловых колебаний атомов в кристаллах б) анализ деталей распределения электронной плотности по атомам и между атомами в кристаллах в) использование структурных данных для оценки параметров, входящих в волновые функции и орбитальные энергии молекулярных систем. [c.180]

    Хотя вычисленную таким образом величину можно применять для целей идентификации с помощью соответствующих таблиц, возникают существенные трудности при их составлении, а главное, при определении Уна стандартной хроматографической аппаратуре. Как видно из записанных формул, надо с большой точностью измерять расход элюента и температуру, давление на входе и выходе колонки, знать массу сорбента в колонке. Большинство стандартных аналитических хроматографов не имеет некоторых необходимых измерительных приборов, например точных манометров непосредственно на входе и выходе колонки, а термостат колонок может обладать значительными температурными градиентами, в результате чего измеряемая температура может несколько отличаться от эффективной. Не всегда можно точно установить и массу сорбента в колонке. Поэтому абсолютными величинами удерживания пользуются преимущественно при определении физико-химических констант, характеризующих адсорбцию и растворение, при этом измерения [c.51]

    Точные измерения электропроводности ионогенных ПАВ не представляют особых трудностей. При увеличении концентрации добавляемой соли точность измерений уменьшается. Так как подвижность отдельных ионов будет заметно отличаться от подвижности агрегированных ионов, то при ККМ происходит резкое изменение эквивалентной электропроводности. По точности и широте применения метод электропроводности, широко используемый для растворов ионогенных ПАВ [И, 26—32], отличается от других методов определения ККМ по измерению других физико-химических свойств этих ПАВ. [c.18]

    Методы физико-химического анализа, основанные на измерении свойств образующегося в системе соединения (соединений), имеют более ограниченную область применений, чем методы, описанные в предыдущем разделе. Точность определения констант равновесия с помощью этой группы методов, как правило, выше, чем с помощью группы методов, основанной на измерении свойств растворителя. [c.427]

    Основная специфика измерений содержаний компонентов веществ состоит в том, что определяемое вещество распределено в матрице пробы и химически связано с компонентами матрицы. Компоненты матрицы, а также ряд других физико-химических факторов пробы могут оказывать влияние и на результаты измерений, и на их показатели точности. Эти обстоятельства приводят к необходимости нормирования влияющих велич Ь для каждой методики анализа при четком определении аналитической задачи и создания локальных поверочных схем для каждого сочетания аналитической задачи и способа ее рещения (методики). Локальные поверочные схемы можно объединять или на уровне высщих разрядов образцовых средств измерений (аттестованных веществ высшей чистоты), или на уровне эталонных измерительных комплексов (установок высшей точности), гарантирующих определенную чистоту вещества, содержание которого измеряется в пробах, или даже на уровне эталона массы. [c.14]

    Главы 5—8 посвящены непосредственно физико-химическим основам фотометрического анализа — влиянию концентрации, pH, а также других практически важных факторов. Таким образом, в этих главах рассмотрены основные условия переведения определяемого компонента в окрашенное соединение. В следующих главах (9—II) рассмотрены аппаратура и общие условия измерения поглощения света — визуальные и фотометрические методы, а также вопросы чувствительности и точности фотометрического анализа. При этом авторы считали необходимым не ограничиваться только рассмотрением математической обработки результатов, но показать роль физико-химических факторов, а также больше внимания уделить вопросам правильности анализа. Попутно показаны принципы фотометрического определения больших количеств — этот вопрос целесообразно рассмотреть именно здесь, так как дифференциальная спектрофотометрия отличается от обычной фотометрии не принципом, а лишь приемами измерения оптической плотности. [c.12]

    Обычно при определении состава приземного воздуха используют химические и физико-химические методы анализа, которые позволяют довольно точно определить содержание активных составляющих воздуха (О2, N2, Н2О, Иг, СО2). Определение инертных газов нельзя провести химическими методами. Методы анализа инертных газов, связанные с фракционной разгонкой и последующими измерениями объемов газа, позволяют определить состав смеси с достаточной точностью лишь при наличии сравнительно больших количеств анализируемого газа [ ], Химические и физико-химические методы анализа оказываются вовсе непригодными для анализа состава воздуха верхних слоев атмосферы, когда порции газа, предоставляемые для анализа, ничтожно малы. Единственными в таких неблагоприятных случаях остаются спектральный и масс-спектральный методы анализа. [c.206]

    Каждый тип смазочных материалов требует специфических и наиболее целесообразных методов исследования. При этом не имеет смысла проводить прецизионные измерения свойств и необязательно, чтобы точность определения значительно превосходила воспроизводимость получаемых данных. Для технических расчетов их погрешность в пределах 2—5 % вполне допустима, так как колебания в химическом составе объекта исследования превышают погрешность метода. В то же время методы, выбираемые для исследования влияния на физико-химические и теплофизические свойства углеводородного состава, содержания вводимых в смазочные материалы присадок, изучения концентрационных зависимостей должны быть более точными. [c.5]

    Между физическими и физико-химическими методами не всегда можно провести строгую границу. Иногда их объединяют под общим названием инструментальные методы, так как для выполнения тех или иных измерений нужны инструменты — прецизионные приборы, позволяющие с большой точностью измерять значения определенных параметров, характеризующих те или иные свойства вещества. [c.11]

    В настоящее время метод ионного обмена является одним из основных физико-химических методов изучения состояния вещества в растворе. Особенно успешным оказалось применение ионного обмена к изучению процессов комплексообразования. Ионный обмен в применении к изучению состояния радиоэлементов в растворе позволяет работать в широкой области концентраций исследуемого вещества, так как нри всех условиях на основании измеренной радиоактивности можно с достаточной точностью судить о распределении исследуемого элемента между ионитом и раствором. В случае же, если изучаемая система нерадиоактивна, добавление к ней радиоактивного изотопа (метод меченых атомов) позволяет изучать эту систему, применяя для количественных определений измерения активности добавленного изотопа. Особенно удобно пользоваться ионным обменом для изучения систем, в которых исследуемый элемент находится в микроконцентрации. [c.587]

    Цветные кислотно-основные индикаторы находят большое применение в лабораторной технике, несмотря иа ограниченную точность измерения pH. Их используют для оценки характера растворов, для контроля правильности приготовления растворов для анализа, а также в кислотно-основных титрованиях, в которых в эквивалентной точке реакции происходит резкое изменение pH раствора часто на несколько единиц. Однако если мы хотим определить pH раствора с большой точностью, чем 1-2 единицы pH, то необходимо обратиться к объективным методам измерения. Принципиально существуют два метода такого измерения - колориметрический (спектрофотометрический) и потенциометрический. Оба метода требуют определенного, хотя бы элементарного, аппаратурного оснащения, умения пользоваться им и знания физико-химических основ применяемого метода. В рамках данной книги мы не можем рассмотреть эти основы обстоятельно поэтому ограничимся лишь кратким изложением принципа измерений, к тому же скорее описательным, чем точным. [c.64]

    Давление измеряют пружинными и жидкостными П-образными манометра.ми, барометрами, индикаторами и датчиками. При определении атмосферного давления можно использовать данные метеорологических станций, находящихся на расстоянии не более 10 км, если разница уровней их расположения ио высоте не превышает 25 м. Тип манометров выбирают в зависимости от необходимой точности измерения давления и физико-химических свойств измеряемой среды. Верхний предел измерения давления по манометру устанавливают так, чтобы показатели рабочего давления находились в средней трети шкалы. Давление неагрессивных газов измеряют обычными манометрами, агрессивных газов — специальными манометрами, на шкале которых указаны среды применения. Допускается измерение давления агрессивных газов обычными манометрами через разделительные сосуды, заполненные нейтральными жидкостями. [c.268]

    Мы показали, что чувствительность и точность ЭФМ-ОК при заданных свойствах измерительного прибора определяются значениями четырех величин — градуировочного коэффициента (/р), относительной погрешности воспроизведения аналитического свойства (светопоглощения, флуоресценции) соединения определяемого элемента б (а) (или Яр), погрешности аналитического воспроизведения фона определения сГф и погрешности измерения Задачами последующего изложения являются физико-химическая интерпретация метрологических характеристик и обсуждение возможностей и путей повышения чувствительности и точности методов. [c.83]

    Общее преимущество работы с колориметром заключается в легкой доступности повторения наблюдений. Точность колориметрического определения зависит от физико-химических условий проведения реакции и способа измерения интенсивности окраски. Даже при самых благоприятных физико-химических условиях реакции измерение окраски растворов может внести значительную ошибку при определении. Последняя чаще всего бывает связана с известной неточностью единичного визуального установления равенства интенсивности окраски двух растворов. Такую ошибку, имеющую случайный характер, можно уменьшить, если сделать несколько наблюдений и взять среднее значение ряда отдельных отсчетов. Повторение, например, колориметрического титрования требует иногда значительного времени, между тем как при работе с колориметром многократное сравнение интенсивности окраски может быть проделано чрезвычайно быстро, так как изменение ее в одной из половин поля зрения достигается простым поворотом винта подъемного механизма, при помощи которого изменяется толщина слоя одного из растворов. [c.104]

    Физико-химические свойства дистиллированной воды при температуре 20°С и атмосферном давлении авторы брали из справочника Физико-химические свойства остальных исследованных жидкостей при этих температуре и давлении определили экспериментально и по возможности контролировали по литературным данным Для измерения вязкости применяли капиллярный вискозиметр ВПЖ—2, ГОСТ 10028—67, позволяющий определять вязкость по времени истечения жидкости через капилляр с точностью 3%. Поверхностное натяжение измеряли но методу выдавливания пузырька воздуха из капиллярного кончика в исследуемую жидкость на специально изготовленном приборе конструкции Ребиндера - . Точность измерения была не ниже 5%. Плотность измеряли с помощью пикнометра для микроопределений типа ПМО ГОСТ 7465—67 и аналитических весов АДВ—200 с точностью 0,01%. Постоянная температура исследуемых жидкостей при определении их свойств поддерживалась с помощью водяной бани и универ- [c.58]

    Здесь необходимо отметить, что погрешности получаемых результатов определяются как тщательностью проведения конкретного эксперимента, так и классом применяемой аппаратуры. Поэтому точность, достигаемую при использовании прецизионной аппаратуры, предназначенной для физико-химических исследований, в совокупности с системами автоматического ввода проб, а также автоматического измерения и интерпретации величин удерживания следует считать для данного этапа развития качественного газохроматографического анализа образцовой , поскольку практически идентификация осуществляется обычно на серийной аналитической аппаратуре, допускающей определенные колебания режима, инерционность и требующей в большинстве случаев ручной обработки хроматограмм. [c.48]

    Точность определения величин АЯ(А ) и А5 химических реакций электронографическим методом зависит от числа температур, выбранных для измерений, величины самого температурного интервала, степени корреляции между параметрами состава и молекулярными параметрами, а также между самими молекулярными параметрами в различных формах, присутствующих в газообразной фазе и т. п. Все эти факторы, а также те, о которых говорилось в разделе 1.6, должны быть тщательно проанализированы в каждом конкретном случае. Если влияние их невелико, то электронографический метод может явиться дополнением других физико-химических методов измерения термодинамических характеристик химических процессов в газообразной фазе. [c.260]

    В больших количествах используют марганцовистую сталь (содержание в ней марганца в зависимости от марки составляет 0,3— 14%). Ее применяют там, где требуется повышенная стойкость к ударам и истиранию. В технике используют много других сплавов марганца. Из сплавов Гейслера (А1 — Мп) изготавливают очень сильные постоянные магниты. Манганин (12% Мп,3% Ni, 85% u) обладает ничтожно малым температурным коэффициентом электросопротивления и другими свойствами, ценными для электроизмерительной аппаратуры. Благодаря использованию манганиновых сопротивлений в потенциометрах при определении разности иотенциалоь А<р достигается точность 10 % и более высокай. Поскольку экспериментальные методы определения многих физикохимических параметров основаны на измерении Дф, надежность огромного числа известных физико-химических констант в значительной стерни обусловлена исключительными свойствами манга нина, ---------  [c.550]

    В физико-химических иследованиях первый путь равносилен увеличению класса точности измерительных приборов или переходу к более прецизионным методам измерений. Второй путь представляется более доступным, но он пригоден лишь применительно к измерению экстенсивных величин. Кроме того, для успешного использования этого приема нужно быть уверенным в том, что абсолютная погрешность измерений не коррелирует с массой исследуемого образца и, следовательно, с измеряемым экстенсивным свойством. Так, если абсолютная погрешность измерения энтальпии сгорания для калориметра данной конструкции есть величина приблизительно постоянная для заданного интервала значений 100—5000 Дж, с целью снижения относительной погрешности определения следует сжигать навески, обеспечивающие большое тепловыделение. Аналогичным образом при определении коэффициента молярного погашения ИЗ измерений концентрации с и оптической плотности D = [c.805]

    Наличие примесей в прпмепяелгых для исследования веществах влияет на условия равновесия и чрезвычайно усложняет анализ смесей. Поэтому исходные вещества должны подвергаться возможно более тщательной очистке. Способ очистки должен выбираться в зависимости от свойств вещества и содержащихся в нем примесей. Применяются физические методы очистки — перегонка, кристаллизация и др., а также химические методы удаления примесей (например, удаление воды с помощью водоотнимающих средств). Для очистки жидких веществ чаще всего используется ректификация, проводимая на обычных лабораторных колонках. Для работы отбирается средняя фракция, которая при необходимости может быть подвергнута повторной перегонке. Критерием чистоты продукта, отбираемого в процессе перегонки, является постоянство физических свойств дистиллата, прежде всего температуры кипения, которую легко контролировать по ходу разгонки. Помимо температуры кипения контролируются чаще всего показатель преломления и удельный вес. Могут, разумеется, контролироваться и другие свойства (например, электропроводность, вязкость). Для оценки степени чистоты следует выбирать такое свойство, которое в наибольшей степени изменяется с изменением содержания примесей и поддается контролю с наибольшей точностью. Помимо измерения физических свойств, следует во всех случаях, когда это возможно, использовать химические и физико-химические методы анализа. Особенно большое распространение для определения чистоты органических веществ получил в последнее время метод газо-жидкостной хроматографии. [c.8]

    Последнее условие сохраняется не только при визуальном, но и при фотометрическом и спектрофотометрическом способах обнаружения точки эквивалентности. При применении других физико-химических способов для этой же цели, например способов, основанных на измерении потенциала системы или электропроводности раствора, второе условие вообще отпадает, благодаря чему в этом случае можно добиться более высокой точности определения. Потеициометрия или коидуктометрия при индикации конечной точки представляют возможность использовать комплексообразующие агенты, дающие с определяемым металлом окрашенные комплексы или даже нерастворимые соединения (см. стр. 168). [c.164]

    В методе остаточных концентраций к определенному объему раствора одной из солей добавляется увеличивающееся от опыта к опыту количество раствора другой соли. После достижения равновесия и коагуляции осадки отжимаются, высушиваются и анализируются. Существует группа методов, не требующих химического анализа для определения состава твердой и жидкой фазы. В разработанном Р.В. Мерцлиным [50, 51] методе сечений для построения диаграммы растворимости измеряется какое-либо физико-химическое свойство жидкой фазы вдоль секущей в треугольнике составов. В качестве измеряемого физического свойства жидкой фазы обычно выбирают показатель преломления, электропроводность, теплоемкость и т.д. Главным критерием здесь служит быстрота, точность измерений и близость функциональных зависимостей свойство - состав к прямым линиям. Это позволяет с минимальными погрешностями находить экстраполяцией точки, определяющие собой на диаграмме положение линий, которые ограничивают поля различных фазовых равновесий. [c.266]

    Коэффициент пересчета, связывающий физическую и химическую шкалы масс, установленный Ниром [1512], изменяется от 1,000278 до 1,000268 в зависимости от того, выбран ли в качестве химического стандарта масс атмосферный кислород или кислород в типичных образцах воды. Эти изменения достаточно малы, и только в отдельных случаях они вызывают неопределенность в атомных весах. В большинстве исследований принимается, что элемент кислород в химической шкале масс состоит из смеси изотопов и имеет атомный вес в 1,000275 раза больше Ю. Если бы это было подтверждено определением, то не было бы и колебания в коэффициентах, связывающих обе шкалы. Использование этого коэффициента изменило бы многие физико-химические величины [2172]. Возрастающая точность измерения масс обусловливает необходимость проведения таких пересчетов. Можно также отказаться от обеих существующих физической и химической шкалы масс и установить новую единую шкалу. [c.42]

    Опыт показывает, что учет основных факторов, обусловливающих искажение результатов хроматографического определения физико-химических характеристик, позволяет достичь высокой точности, которая, в частности, для коэффициентов активности и других величин, по данным Кобаяши и др. [32], соответствует погрешности 1—2 отн.%.Это и явилось значительным стимулом широкого введения газовой хроматографии в практику физикохимических исследований. Количество соответствующих публикаций к 1969 г. превысило 300, причем если до 1962 г. первенство принадлежало газо-адсорбционному варианту, то в последующие годы большая часть работ была выполнена с помощью газо-жид-костной хроматографии. Интересно отметить, что капиллярные колонки для неаналитических измерений использовались лишь в небольшом числе случаев. В табл. 1 приведены данные Кобаяши и др. [32] о публикациях за пятилетние периоды (эти данные нельзя считать исчерпывающидга, поскольку в них, в частности, недостаточно учтены советские работы). [c.24]

    Уравнение (40) дает ключ к пониманию того, что параметры удерживания, полученные экспериментатором, часто отличаются от литературных данных. Это объясняется прежде всего тем, что результаты, приведенные в литературе, получены на иных материалах-носителях с другими химической природой и площадью поверхности. Это приводит к тому, что член ZKjAj в удерживаемом объеме компонента сравнения отличается от аналогичного члена, рассчитанного для идентифицируемого вещества. При количественном определении на основе хроматографических измерений таких физико-химических величин, как коэффициенты активности, коэффициенты распределения, энтальпии смешения и испарения, также необходимо учитывать влияние поверхностных эффектов. Пока еще нельзя полностью описать свойства поверхности пористых тел и структуры поверхности жидкости, поэтому в газожидкостной хроматографии невозможно предсказать с достаточной точностью удерживаемый объем и индекс удерживания разделяемого компонента. [c.35]

    Для учета влияния физико-химических свойств улавливаемых жидкостей на процесс сепарации эксперименты проводились на дизельном топливе марки Л ГОСТа 305—62 и на маслах авиационном МС-14 (ГОСТ 1013—49), индустриальном 30 (ГОСТ 8675—62), трансформаторном (ГОСТ 982—56), компрессорном М (ГОСТ 1861—54), а также па воде, глицерине и водоглицериновых растворах различной концентрации. Количество распыливаемой жидкости определялось по времени работы форсунки, которая имела строго установленный при тарировке расход и определенную дисперсность распыла, и контролировалось объемным методом, как н количество отсепарированной жидкости с точностью 0,5 мл. Измерение перепадов давлений производилось дифма-нометром ДТ-50. Точность измерений перепада давления составляла 0,5 мм вод. ст. [c.42]

    Области использования масс-спектрометрических методов многообразны. С помощью масс-спектрометрии были открыты изотопы, а впоследствии был установлен изотопный состав всех элементов периодической системы, измерены с высокой точностью массы атомов, молекул и их дефекты, исследованы изменения изотопного состава легких элементов, происходящие под влиянием физико-химических процессов в природе, измерен абсолютный возраст геологических образований по накоплению изотопов свинца, стронция и аргона, выявлена тождественность изотопного состава элемента в земных и космических веществах, в отдельных случаях были определены периоды полураспада радиоактивных изотопов. Этн методы сыграли важную роль в становлении технологии искусственного разделения изотопов и степени их обогащения в связи с задачами атомной энергетики. Масс-спектрометрические методы используются в количественном химическом анализе при исследовании много-компонеитных газовых смесей, для определения микросодержания газовых примесей в твердых веществах, а в сочетании с изотопным разбавлением с их помощью удается обнаружить примеси инородных атомов в чистых веществах с высокой чувствительностью и точностью. [c.12]

    Если в распоряжении исследователя имеется априорная информация о принадлежности компонентов анализируемой смеси к определенной группе соединений близкой молекулярной структуры (или к неско. 1Ьким группам), то индивидуальная идентификация может быть осуществлена на основании корреляций между величинами удерживания, физико-химическими свойствами и строением их молекул (числом фрагментов того или иного типа, числом однотипных связе11 между атомами и т. д.). Естественно, что правильность проводимо идентификации определяется точностью измерения величин удерживания, эффективностью и селективностью колонки, а также точностью используемых корреляций. Эти требования взаимосвязаны и зависят от того, насколько различаются между собой величины удерживания соседних (по сорбируемости) компонентов смеси. Нанример, когда индивидуальная идентификация осуществляется в пределах группы гомологов па основании зависимости между величиной удерживания и температурой кипения, требования к разделяющей способности колонки и точности измерения величи удерживания будут существенно ниже, чем в случае идентификации в пределах группы изомеров с близкими точками кипения. [c.79]

    Точность газохроматографического определения теплот адсорбции зависит от точности измерения исправленного времени удерживания, температуры колонки, скорости газа-носителя, давления газа у входа в колонку и т. д. Необходимо отметить, что многие аналитические хроматографы не позволяют с большой точностью определить температуру колонки (во многих хроматографах имеется градиент температуры вдоль колонки), а также не позволяют определить давление у входа в колонку и скорость потока газа. Б связи с этим Кнозингером и Снаннхеймером [93] описан хроматограф, предназначенный специально для точных физико-химических исследований нри помощи газовой хроматографии. В этом хроматографе можно определять давление у входа в колонку с точностью +0,1 мм рт. ст., скорость потока газа с точностью +0,1 мл мин, причем градиент температуры в колонке меньше +1°С. [c.130]


Смотреть страницы где упоминается термин Физико-химические измерения, определение точности: [c.526]    [c.342]    [c.576]    [c.550]    [c.134]   
Практикум по физической химии Изд 4 (1975) -- [ c.11 ]




ПОИСК





Смотрите так же термины и статьи:

Точность

Точность измерений



© 2025 chem21.info Реклама на сайте