Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Масла минеральны.е, анализ

    Горючие сланцы по некоторым характеристикам представляют собой промежуточные продукты между нефтью и углем. От нефтеносных и битуминозных песков они отличаются тем, что органическое вещество весьма ограниченно растворимо в обычных растворителях — бензине и сероуглероде. От угля они отличаются обычно большим содержанием минеральной части (в одном из анализов было найдено, что сланцы содержат 30 % и больше золы) и более низким отношением содержания углерода к содержанию водорода. Это последнее является определенным преимуществом сланцев в качестве сырья для производства жидкого топлива. Масло, получаемое [c.60]


    Щелочность и кислотность масел alkalinity, a idity). Очищенное минеральное масло, как правило, является химически нейтральным. Для нейтрализации кислот, образующихся во время работы при сгорании сернистого дизельного топлива или окисления углеводородных молекул масла, в моторные и трансмиссионные масла добавляют щелочные присадки. Обычно эту задачу выполняют моющие и диспергирующие присадки - детергенты (поверхностно-активные вещества). Чем больще щелочность масла, тем больще его рабочий ресурс. Поэтому для моторных и трансмиссионных масел в качестве эксплуатационного показателя указывается общее щелочное число TBN. В некоторые индустриальные масла (охлаждающие смазочные жидкости и др.) добавляют активные сернистые присадки, которые имеют слабую кислотную реакцию. В связи с этим, в качестве показателя химических свойств, указывается общее кислотное число TAN. Этот показатель иногда определяется и при анализе работающего или отработанного масла как показатель степени окисления масла и накопления кислых продуктов сгорания топлива. [c.39]

    В принципе в качестве компонентов в структурно-групповом анализе могут быть выбраны самые разнообразные структурные элементы . Обычно считают, что минеральное масло построено из ароматических и нафтеновых колец, а также из парафиновых цепей свободных или связанных . Если анализ включает и спектроскопические измерения, то в качестве структурных групп можно принять олефиновые, бензольные и нафталиновые структуры. [c.366]

    Способ ASA (структурно-групповой анализ ароматических соединений) [2.18] для ориентировочного структурного анализа нефтяных смесей основан также на ИК-спектрометрии. ИК-вариант метода n-d-M не обнаруживает значительных структурных различий для нескольких проб минерального масла, а метод ASA выявляет заметную разницу в составе насыщенных структурных групп. [c.40]

    Нефтяные масла в процессе их производства могут загрязняться веществами, содержащимися в исходном нефтяном сырье. Анализ нефтяной золы показывает, что в состав минеральных компонентов нефти могут входить многие вещества, главным образом в виде окислов. Пределы содержания этих веществ в золе нефтей различных месторождений приведены ниже (в % масс.) [il]  [c.9]

    Гольде [1] рекомендует при количественном определении минеральной кислотности в сомнительных случаях определять количество серной кислоты весовым путем в виде сульфата бария и вносить поправку на содержание в масле КагЗО последняя примесь должна определяться анализом золы масла. [c.599]


    Металлы, перечисленные в п. 2, а также хлор и фосфор, в очищенном минеральном масле присутствуют в виде следов. Перечисленные методы применяют для анализа масел с присадками, чтобы установить тип и концентрацию введенных присадок. [c.37]

    Анализ асидола, асидол-мылонафта и мылонафта заключается в определении содержания органической части (сырых нафтеновых кислот), чистых нафтеновых кислот, минерального масла (неомыляемых), воды, а для двух последних продуктов также минеральных солей (сульфатов и хлоридов). [c.778]

    Числовые показатели. Эфирного масла не менее 0,2% влажность не более 10% золы общей не более 4% золы, нерастворимой в 10% растворе хлористоводородной кислоты, не более 0,7% других частей березы (веточки, в том числе отделенные от почек при анализе, сережки и пр.) не более 8% почек, тронувшихся в рост и слегка распустившихся, не более 2 % органической примеси не более 1 % минеральной примеси не более 0,5%. [c.299]

    Анализ кривых течения растворов асфальтенов и лакового битума в минеральном масле показывает, что эти два вида ВМС нефти формируют в минеральном масле струк-т фные образования различной прочности. В растворах битума характерно образование большого количества пространственных структур с низкой прочностью. В растворах асфальтенов, по-видимому, образуются более компактные и прочные структуры. Можно предположить, что при этом сольватный слой структурных образований в растворах лакового битума имеет большую толщину, чем в растворах асфальтенов пиролизной смолы. Следует отметить, что наиболее прочную структуру в минеральном масле образует лаковый битум, а наименее прочную — асфальтены. Асфальтит занимает среднее положение между битумом и чистыми асфальтенами. Такое же положение он занимает и по реологическому поведению. С увеличением температуры относительная прочность структур из лакового битума уменьшается. Можно предположить, что при более высоких температурах (около 60°С) уменьшается относительная прочность структур и в растворах асфальтита, что обусловлено образованием за счет содержащихся в лаковом битуме и асфальтите парафино-нафтеновых, легких и средних ароматических углеводородов сольватных слоев значительной толщины вокруг ядер структурных образований. Естественно, это способствует образованию термически и механически непрочной структуры. Асфальтены из пиролизной смолы формируют плотные структурные образования, занимающие относительно небольшой объем в дисперсной системе. Поэтому при низких температурах в этих растворах образуется недостаточно развитая пространственная сетка, но термически более прочная, чем в растворах ВМС, содержащих парафино-нафтеновые и ароматические углеводороды. [c.257]

    В Советском Союзе кислотность нефтей и минеральных масел выражают кислотным числом, которое показывает, сколько миллиграммов КОН необходимо затратить для нейтрализации свободных органических кислот, содержащихся в 1 з нефти или минерального масла. Кислотность бензинов, лигроинов, керосинов и дизельных топлив выражается в мг КОН на 100 мл испытуемого нефтепродукта. Различие в количественной оценке кислотности для топлив и масел объясняется тем, что требования для топлив в отношении кислотности гораздо выше, чем для масел. Кроме того, вследствие летучести топлив проще при анализе отбирать пробу по объему. [c.107]

    Для фазового и элементного анализа твердых тел используют инверсионную В. с электроактивными угольными электродами (т. наз. минерально-угольными настовыми электродами). Их готовят из смеси угольного порошка, исследуемого порошкообразного в-ва и инертного связующего, напр, вазелинового масла. Разработан вариант этого метода, к-рый дает возможность проводить анализ и определять толщину металлич. покрытий. В этом случае используют спец. устройство (прижимная ячейка), позволяющее регистрировать вольтамперограмму, пользуясь каплей фонового электролита, нанесенного на исследуемую пов-сть. [c.417]

    Числовые показатели. Цельное сырье. Эфирного масла не менее 0,1 % влажность не более 13 % золы общей не более 10 % почерневших и побуревших частей растения не более 7 % кусочков стеблей и боковых веточек, в том числе отделенных при анализе, не более 40 % органической примеси не более 1 % минеральной примеси не более 1 %. [c.329]

    Было определено строение трех масел, которые при полном их насыщении становились бесцветными. Данные для этих масел полностью укладывались в диаграмму, составленную Ватерманом и сотрудниками [19] для минерального масла и его отдельных фракций. Данные анализа инфракрасного спектра показали, что все эти масла подобны насыщенному антраценовому маслу. [c.80]

    Нефтепродукть . Метод азеотропной отгонки, по-вндимому, разработан именно на основе метода дистилляции нефтяных фракций вода при этом собирается в нижнем слое дистиллята. Одним из первых было сообщение Маркуссона [191 ] о применении толуола для анализа консистентных смазок. Дин и Старк [94] для определения влаги в нефтепродуктах использовали смесь 20% бензола и 80% ксилола или петролейный эфир (т. кип. 90—150 °С). Обычно для анализа нефтепродуктов применяют ксилол [4—6, 14, 300], толуол [4,5] или бензол [90]. Для определения влаги в пеках и ас-фальтах рекомендуется отгонка со смесью 20% бензола и 80% ксилола в аппарате Дина—Старка [14]. Воспроизводимость результатов при анализе асфальтовых эмульсий, содержащих 1— 50% воды, составляла 0,2—0,4%. При определении воды в минеральных маслах Фукс [117] использовал метод отгонки с бензолом. Для более четкого выявления капель воды в органическом слое он добавлял в ловушку 1—2 мл концентрированного раствора асфальта в бензоле. При этом на фоне окрашенного бензола были хорошо видны бесцветные капли воды. Их удаляли легким постукиванием или осторожным нагреванием приемника. В официальном методе ASTM для определения воды в нефтепродуктах и других битумных материалах [4—6] применяют приборы Дина—Старка (см. рис. 5-1 и 5-2). [c.275]


    Исходя из требований, предъявляемых к смазочным маслам, при их анализе определяют плотность, вязкость, температуру вспышки, содержание механических примесей, золы, влаги, минеральных кислот и щелочей, серы, органическую кислотность, температуру застывания и ряд других показателей, имеющих специальное значение. [c.149]

    Для анализа промышленных партий сульфонатов и сульфокислот более целесообразно применение одного метода жидкостной распределительной хроматографии, который позволяет определить содержание минерального масла (углеводородной части) и сульфонатов (сульфокислот) непосредственно в процентах по массе. [c.325]

    ГОСТ 5211—50 предусматривает определение в пластичных мазках на мыльных загустителях содержания мыл, связанных и свободных высокомолекулярных органических кислот и минерального масла путем экстракции растворителями и титрования. Однако ТОСТ 5211—50 не всегда удовлетворяет требованиям современной промышленности. Ассортимент отечественных пластичных смазок расширился за счет применения, в частности, смазок на основе литиевых И кальциевых мыл 12-оксистеариновой кислоты, растворимость кото рых предусмотренных указанным методом анализа растворителях ((бензол и спирт — бензол) низка. В связи с этим появляется необходимость применения больших объёмов растворителей, ухудшается четкость экстракционного разделения, увеличиваются затраты труда и времени на проведение анализа по ГОСТ 5211—50, Кроме того, получаемая по этому методу информация недостаточна для полной характеристики состава современных пластичных смазок из-за отсут- ствия данных по содержанию и составу присадок, неорганических наполнителей, восков, компонентному составу жирных кислот и т. д. [c.332]

    Относительная среднеквадратичная погрешность определения жирных кислот и мыла составляет 2,2%, а для минерального масла 3,0%. Продолжительность анализа 1,5—2,0 ч. [c.340]

    Если состав масла выражен количеством структурных групп, то аналпз называется структурно-групповым. Прежде считалось, что минеральное масло состоит из ароматических и нафтеновых колец (насыщенные углеродные кольца) и парафиновых цепей ( свободных или же связанных)). Существуют два метода интерпретации результатов структурно-группового анализа. Первый метод состоит в определении числа колец или других [c.367]

    Определение содержания масла в растворителе осно вывается на способности минеральных масел флуорес пировать при воздействии ультрафиолетового излучения Для проведения анализа может использоваться фото электрический флуориметр типа ФЛЮМ, а также люми несцентный компаратор ЛК-1. [c.209]

    Количественный анализ смешанных масел основан на обмылива-пии нефтяных примесей водной или спиртовой щело 1ью. Взвешивание необмыленного остатка дает цифру для минерального -масла, а примесь определяется по разности. Если через п обозначить число см нормальной щелочи, через р — число г масла, а через / — количество масла, обмыливаемое 1 см нормальной щелочи, то все содержание жирного масла будет в процентах  [c.309]

    Количественное определение производится разложением мыла соляной кислотой. 10 см масла смешиваются в делительной воронке с 100 см эфира и небольшим количеством соляной кислоты. К смеси прибавляют затем спирт и титруют, по общему способу, с фенолфталеином. Зная количество Соляной кислоты, можно вычислить количество взятого основания. Менее общий случай анализа такого рода смесей описывает Маркуссон (237). По его способу мыло определяется гравиметрически масло, содержащее его, извлекается спиртом до тех пор, пока экстракт не будет испаряться без остатка. Для этой цели исследуемое махзло предварительно разводится нефтяным эфиром (1 3) и применяется спирт в 50%—потому что более крепкий захватывает часть минерального масйха. [c.311]

    Технический продукт, находящий обширное применение в нефтяной промышленности (эмульсирующие масла) и для расщеплена жиров, обычно содержит, по анализам Шестакова, до 53% чистых сульфокислот. Все остальное составляют примеси вода, спнрт, вазелиновое масло, немного серной кислоты, свободной и свяфнной, и минеральные вещества. Доброкачественность технического продукта качественно определяется взбалтыванием с водой — образование мутного раствора свидетельствует о неблагоприятном Соотношении между свободными сульфокислотами и минеральным маслом (масла больше 20% и кислот меньше 40%). — [c.325]

    Водород может содержать также кислотные прнмеси, например диоксид углерода, муравьиную кислоту, OS, SO2 и H2S, которые нередко вредны для реакции. Заметим попутно, что гидопруемое вещество, например кокосовое масло, может прогоркнуть, и в нем образуются органические кислоты. Еще более сильные яды (минеральные кислоты) остаются в гидрируемом веществе после кислотной промывки, иногда используемой в ходе его обработки. Даже не обнаруживаемые химическим анализом количества кислоты в веществе, идущем на гидрирование, могут подавить реакцию, п причину неудачи трудно установить. [c.106]

    Анализ контакта состоит из определений содержания серной кислоты, сульфокислот, минерального масла, золы, молекулярного веса сульфокислот и способности к смешиванию с водой без выделения масла. Кроме того, для контакта, идуш,его на нужды жировой промышленности, определяют расш е-пительную способность. Качества контакта обычно выражают отношением содержания сульфокислот к содержанию отдельных примесей масла, серной кислоты, золы и т. д. [c.770]

    В приводах реактивных самолетов, полиэфирные — в основном для смазывания авиационных турбин. Применение быстробиораз-лагаемых СЭ в первую очередь целесообразно в случае вероятности непосредственного воздействия смазочного материала на природные экосистемы и/или организм человека — в строительной, лесной, пищевой, дорожной и других отраслях промышленности, а также в случае однократного использования смазочного материала (например, в двухтактных ДВС). Так, например [172, 309], разработка гравийных карьеров, как правило, осуществляется в условиях непосредственного контакта тяжелой техники с подземными водами. В связи с большими объемами минеральных масел, используемых в гидросистемах машин и механизмов, опасность зафязнения подземных вод в зоне производства работ из-за неизбежных случайных и аварийных проливов масел весьма высока. Поэтому одно из швейцарских предприятий по добыче гравия после тщательного сравнительного анализа различных типов гидравлических масел остановило свой выбор на биологически окисляемом масле на основе насыщенных эфиров. Более высокая стоимость таких масел окупается за счет 3-кратного увеличения срока их службы и отсутствия токсичного воздействия на окружающую среду [172]. [c.207]

    Поскольку ийгибирующие и детергентные присадки являются [ астворимыми в масле органическими соединениями, содержа-и1,иыи 11еоргайпческпе элементы (серу, фосфор и металлы), они, естественно, изменяют определенные физические и химические свойства содержащих пх минеральных масел. В табл. 48 приведена приблизительная дозировка неорганических компонейтов типичных присадок. Ингибиторы и детергенты могут добавляться к маслам в количествах от менее 1 % до 15 и 20%, поэтому обработанные ими масла будут содержать соответствующие количества серы, фосфора, металлов и пр., которые могут быть установлены химическим анализом. [c.185]

    В аналитической химии эластомеров для определения состава резинового материала применяется метод термогравиметрии. На рис. 20.13 приведена термогравиметрическая кривая для модельной резиновой смеси, по которой установлено наличие в составе смеси 9% мягчителя (минерального масла), 43% ЭПДК, 46% неорганического остатка (наполнителя), 2% карбонизированного продукта (технического углерода). Но вывод о типе сшивающей системы можно сделать после дополнительного хроматографического анализа. [c.595]

    Анализ карбоновых кислот более успешен, если сначала превратить эти кислоты в соответствующие эфиры или соли. При этом отпадают трудности, обусловленные проявлением межмолекулярных связей. Этим способом, например, Кильдеру и Струтерсу [1] удалось определить смеси кислот в форме соответствующих солей в минеральном масле. [c.122]

    В лабораторных условиях была изучена возможность полу чения таллового масла непосредственно из черных щелоков В основу метода положена способность мыл в пленке реагиро вать с парами минеральных кислот. При флотации черных ще локов в образующейся пене устанавливается подвижное равно весие между кислотами и их солями. Оно может быть сдвинуто в сторону образования жирных и смоляных кислот при введении в процесс минеральных кислот. Было установлено, что при флотации черного щелока плотностью 1070 кг/м при 70 С воздухом, насыщенным парами соляной кислоты, расход воздуха должен составлять 25 м на 1 м черного щелока. Анализ состава смолистых веществ черного щелока до выделения сульфатного мыла и после него показывает, что преимущественно выделяются из черного щелока наиболее ценные компоненты — жирные и смоляные кислоты. Эффективность процесса резко ухудшается при повышении температуры щелока. Если при 16 С извлекается около 60 % смолистых веществ, содержащихся в черном щелоке, то при 70—85 С — только 45—50 %. [c.71]

    НИН 100 й хлоргидрата ацетиминоэтилового эфира. Закрытую скляяку СИЛьаб встряхивают в течение 3—4 мин., извлекают выделившийся эфир 2 раза этиловым эфиром, сушат иад сульфатом натрия и концентрируют иа водяной бане. Оставшееся масло кипит при 12 мм давления при 27° при 36 жж при 48°. При перегонке необходимо сильно охлаждать приемник. При обычном давлении эфир кипит при 127—128°, частично разлагаясь. Анализ дает вместо высчитанного количества азота 11,53% лишь 10,8Уо. Масло, перегнанное в вакууме, чистое. Выход почти количественный. Эфир представляет собой бесцветное масло, растворимое в органических растворителях и не растворимое в воде.. Имеет своеобразный запах и в присутствии разбавленных минеральных кнслот разлагается уже при комнатной температуре на хлорамин NHa l и этилацетат (доказательство строения). [c.688]

    Баркфорт и Даниель [325] произвели радиохимический анализ состава пленок на поверхно стях толкателей клапанов после работы двигателя на минеральном масле, содержавшем a нти-окислительную, детергентную и полимерную присадки, а также [c.157]

    Прямое титрование до появления мутности часто приводит к разбросу результатов. Этого можно в значительной степени избежать, если добавить к образцу какое-либо подходящее масло, нагреть, пока раствор не станет прозрачным, и затем дать ему охладиться до возникновения мутности. Симэн, Кортон и Хьюгоне [161] обнаружили, что при определении воды в анилине лучше применять смесь хлопкового масла с тяжелым минеральным маслом, например с вазелиновым, чем рекомендованное ранее рапсовое масло. Для проведения анализа к 20 мл анилина добавляют 3,5 мл смеси (5 1) хлопкового и минерального масел, образец нагревают на водяной бане до тех пор, пока мутная эмульсия не станет практически прозрачной, немедленно вынимают из бани и оставляют охлаждаться. Затем определяют температуру (точку) помутнения с правильностью 0,05 °С. Воспроизводимость и правильность определения, по данным авторов, составляет около 0,01% при содержании воды в образце О—4% [161]. Аналогичная методика с использованием смеси гексанол—хлопковое масло предложена для определения воды в фурфуроле [75]. [c.540]

    Основой расчета составов КОВ служат кривые седктурооб-разования (концентрационные зависимости наибольшей относительной ньютонорокой вязкости 1 ), характер которых, как видно из анализа работ /1-6/, независимо ог качества фазы и среды аналогичен для ряда таких систем, кан асфальтены 1 мальтенах, полимеры в растворителе, полимеры в битуме, минеральные наполнители в битуме, полимеры, масла, битум в воде, составляющие строительные материалы. [c.189]

    Твердые вещества можно также анализировать в виде тонкого слоя, нанесенного на пластинку из щелочного галогенида в виде пасты или кашицы, изготовляемой растиранием образца с небольшим количеством тяжелого парафинового масла. В этом случае пригодно тяжелое минеральное масло, применяемое в медицине, так как оно имеет лишь несколько изолированных полос поглощения, мешающих проведению анализа. Пасту или кашицу помещают между пластинками из соли, необходимый зазор между жотюрыми обеспечивается за счет металлической прокладки по периметру пластины, и все стягивают металлическими зажимами. Хлорид серебра может быть также использован в качестве материала для окон его применение целесообразно в случаях, когда определяемое вещество вступает в реакцию с другими солями. Толщина поглощающего слоя обычно составляет десятые или сотые доли миллиметра (в то время как при исследовании светопоглощения в ультрафиолетовой и видимой областях, где употребляются разбавленные растворы, она колеблется от 1 до 10 см). [c.80]

    Однако количественные данные о продольном перемешивании в насадочных колоннах (величинах диффузионного критерия Пекле Ре, характеризующего продольное перемешивание) весьма ограниченны. Соответствующие данные получены только для сферических и кольцевых насадок на системах керосин— вода и минеральное масло — вода2 в . Эти данные недостаточны для анализа массопередачи и использования их при проектировании насадочных колонн. Исследования позволяют сделать лишь следующие качественные выводы как и следовало ожидать, критерий Ре увеличивается с возрастанием Ус и уменьшается с увеличением Ув. Критерий Ре уменьшается с увеличением Ус и уменьшением Ув (для дисперсной фазы, не смачивающей насадку) или с возрастанием Ув (для дисперсной фазы, смачивающей насадку). [c.555]

    Таким образом, современные композиции ПАВ, СОЖ, присадок к смазочным маслам и пластичных смазок представляют собой смеси различных промышленных фракций органических веществ, полимеров, минеральных и органических солей, кислот, оснований и т. д., что делает их сложными для аналитических исследований объектами. Разработка методов анализа этих композиций практически сводится к соЕДанию возможно более универсальных схем и способов полного разделения их на отдельные классы веществ, группы и даже компоненты. Любое улучшение указанных композиций и составляющих ПАВ эд счет введения веществ новых классов, изменения химического. или даже изомерного состава содержащихся в них веществ и т. д. ставит под сомнение возможности разработанных ранее схем и методов, что, в свою очередь, вызывает необходимость их постоянного совершенствования. [c.287]

    Разделение конечных композиций присадок к маслам методом диализа (см. табл. 35) во многих случаях обеспечивает получение продуктов (диализат и концентрат), анализ которых может быть проведен простыми и быстрыми методами тонкослойной хроматографии. Обычно в состав диализата входят минеральные, природные жиры или синтетические масла, а также низкомолекулярные антиокислительные, антизадирные присадки, ингибиторы коррозии и ржавления и т. д. Учитывая относительно небольшое число указанных групп присадок в общей массе диализата, определение вязкости достаточно точно характеризует тип базового минерального масла, а тонкослойная хроматография — соотношение основных групп углеводородов [543, 544]. Для характеристики синтетических и природных масёл определяют число омыления, проводят спектральный анализ в И1 -области. [c.323]

    Анализ присадки MAGK. Хроматографическую колонку заполняют силикагелем АСК нижнюю часть (50 мм) — активным силикагелем, верхнюю часть (70 мм) — силикагелем, содержащим 30% воды. Навеску присадки 0,1 0,01 г (см. разд. ПГ.2.2.2.2) растворяют в 1 мл н-гексана и переносят в колонку с силикагелем, предварительно смоченным 7 мл н-гексана. Стакан ополаскивают 2 м к-гексана и раствор также переносят в колонку. Когда слой жидкости над поверхностью силикагеля снизится до 1—2 мм, в колонку подают последовательно 17 мл н-гексана, 25 мл хлороформа и 15 mje этанола. Фракции вещества с растворителями отбирают на взвешенные часовые стекла н-гексановую — на первое часовое стекло, хлороформную на второе, а этанольную — на третье. Фракции на. первом й втором часовых стеклах выдерживают 20 мин при 80 С,, а фракцию на третьем часовом стекле после испарения этанола выдерживают 20 мин в сушильном шкафу при 105 °С. После охлаждения стекол их взвешивают и определяют выход веществ. Одновременно проводят параллельный опыт. Содержание в пробе минерального масла (на первом часовом стекле), алкилфеноло в и алкилфени-ловых эфиров (на втором часовом стекле) и алкилсалицилата кальция, (на третьем часовом текле) рассчитывают, как описано в разд. III.2.2.2.2. - [c.329]

    Анализ пластичных смазок на бумаге из стеклянных волокон. Более точно определение содержания минерального масла и мыла проводят хроматографированием на бумаге из стеклянных волокон, осуществляемым так же, как на бумаге из волокон целлюлозы. Однако проявление н-гептаном проводят 5—10 мин, а затем полосу подсушивают в сушильном ]Ц1кафу при 100 °С и после охлаждения разрезают ее на две части между зоной распространения масляного пятна и зоной старта с оставшейся на ней мыльной частью пластичной смазки и взвешивают обе части ( з и g ). Минеральное масло экстрагируют н-гексаном из отрезанной части полоски бумаги, полоску высушивают при 100 °С и после охлаждения взвешивают ( 4). Содержание минерального масла (х,) и мыла (х ) в ппастнчной смазке в процентах рассчитывают по формулам  [c.342]

    Следует отметить, что некоторые патентные вещества применяются, повидимому, за границей для той же цели. Так анализ паратона (эксанола), приведенный в статье Куди ова [31, отвечает формуле изобутилена. Интересующее же автора этой статьи вещество несомненно является полиизобутиленоь или апанодом. Этот высокомолекулярный продукт, хорошо растворяющийся в нефтепродуктах и не выпадающий при охлаждении, и может быть применен для указанной нами цели. Но совершенно бесцельна попытка применить его в качестве средства, улучшающего температурную зависимость обычных вязких смазочных масел. Как мы видим, температурная зависимость подобных растворов в лучшем случае остается неизменной. Изложенный материал позволяет т кже понять, почему тяжелые парафинистые масла имеют сравнительно малый температурный коэффициент вязкости. Однако, применение высокомолекулярных парафинов в смазках нежелательно в силу их склонности к кристаллиза-дии. Применение парафлоу окажется излишним, если в легких минеральных маслах растворить высокомолекулярные продукты, не выпадающие при охлаж- [c.165]

    Методика анализа следующая. Навеску пробы растворяют в хлороформе в соотношении 1 10 (масса объем). Готовят смесь угольного порошка с носителем (3—5% хлорида или фторида натрия) и в эту смесь вводят раствор пробы (1 часть пробы на 10 частей смеси угля с носителем). После тщательного перемешивания хлороформ выпаривают и сухим порошком заполняют канал электрода с шейкой. Верхний электрод заточен на усеченный конус. Условия анализа приведены в табл. 46. Фон определяют по методу двух линий. Для уменьшения фона электроды с образцами подсушивают в муфельной печи 30 мин при 350—400 °С. При этом значительная часть углеводородной основы улетучивается, но минеральные примеси сохраняются,. так как угольный порошок является хорошим коллектором. Эталоны гзтовят растворением о-гидроксихинолинатов металлов в вазелиновом масле. [c.201]


Смотреть страницы где упоминается термин Масла минеральны.е, анализ: [c.369]    [c.12]    [c.31]    [c.105]    [c.330]    [c.342]    [c.31]   
Рефрактометрические методы химии (1960) -- [ c.53 , c.355 ]




ПОИСК





Смотрите так же термины и статьи:

Масла минеральные

Масла, их анализ



© 2025 chem21.info Реклама на сайте